
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5
for Automatic Program Repair

Anonymous Author(s)
Submission Id: 131

ABSTRACT
Automatic program repair (APR) is crucial to reduce manual debug-
ging efforts for developers and improve software reliability. While
conventional search-based techniques typically rely on heuristic
rules or a redundancy assumption to mine fix patterns, recent years
have witnessed the surge of deep learning (DL) based approaches to
automate the program repair process in a data-driven manner. How-
ever, their performance is often limited by a fixed set of parameters
to model the highly complex search space of APR.

To ease such burden on the parametric models, in this work, we
propose a novel Retrieval-Augmented Patch Generation frame-
work (RAP-Gen) by explicitly leveraging relevant fix patterns re-
trieved from a codebase of previous bug-fix pairs. Specifically, we
build a hybrid patch retriever to account for both lexical and seman-
tic matching based on the raw source code in a language-agnostic
manner, which does not rely on any code-specific features. In addi-
tion, we adapt a code-aware language model CodeT5 as our founda-
tion model to facilitate both patch retrieval and generation tasks in
a unified manner. We adopt a stage-wise approach where the patch
retriever first retrieves a relevant external bug-fix pair to augment
the buggy input for the CodeT5 patch generator, which synthesizes
a ranked list of repair patch candidates. Notably, RAP-Gen is a
generic APR framework that can flexibly integrate different patch
retrievers and generators to repair various types of bugs.

We thoroughly evaluate RAP-Gen on three benchmarks in two
programming languages, including the TFix benchmark in JavaScript,
and Code Refinement and Defects4J benchmarks in Java, where
the bug localization information may or may not be provided. Ex-
perimental results show that RAP-Gen significantly outperforms
previous state-of-the-art (SoTA) approaches on all benchmarks, e.g.,
boosting the accuracy of T5-large on TFix from 49.70% to 54.15%
(repairing 478 more bugs) and repairing 15 more bugs on 818 De-
fects4J bugs. Further analysis reveals that our patch retriever can
search for relevant fix patterns to guide the APR systems.

1 INTRODUCTION
Program repair is one of the most important stages to maintain
software quality, which however is a time-consuming and cost-
dominating process inmodern software development [47, 69]. There-
fore, there have been huge needs for Automatic Program Repair
(APR) tools to ease the difficulty and cost of program repair for
developers with use cases including search of patches at program
development time [42], build time [40, 63] or run time [8, 45].

A notable class of conventional techniques for APR is known as
search-based (also referred to as generate-and-validate) approach [11,
18, 32, 49, 68, 70]. They often search for repairs based on the fix

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Error msg: Expected an object to be thrown.

Buggy code:
if (_.isUndefined(exp))
 {throw "expected a value, got undefined
instead";}

Before fix:
evaluate: function() {
 throw "undefined for looping expressions";
}

After fix:
evaluate: function() {
 throw new Error("undefined for looping
expressions");
}

if (_.isUndefined(exp))
 {throw new Error("expected a value, got
undefined instead");}

You face a bug One bug fix example in codebase
Retrieve

Fix

Figure 1: One motivating example of how developers fix a
bug by referring to a retrieved fix pattern in codebase.

patternsmined viamanual heuristic rules [23, 49, 58] or redundancy-
based techniques [11, 18, 32–34, 70]. The latter group of approaches
make a redundancy assumption [71] that the fixed patch can often
be found (or reconstructed) from elsewhere in the codebase (a donor
code snippet). This hypothesis has been validated empirically by
studies [3, 41] showing that a significant proportion of commits
(3%-17%) are indeed composed of existing codebase.

Meanwhile, with the recent advancement in deep learning tech-
nologies, numerous deep learning (DL)-based APR approaches [4, 6,
19, 38, 62, 76] have been proposed to automate the repair process via
parametric models in a purely data-driven manner. In this paradigm,
the APR task is typically formulated as a neural machine transla-
tion (or sequence-to-sequence learning) problem [56] in order to
translate a buggy (source) program into a correct (target) version.
Despite their promising results in software intelligence tasks, their
performance is often limited by the fixed set of model parameters
to learn the highly complex distributional patterns for program
repair, even with several hundreds of million parameters [4, 19, 76].

To ease such burden on the parametric neural models, in this
work, we propose a novel retrieval-augmented patch generation
framework called RAP-Gen to additionally leverage relevant fix
patterns from a patch retriever. Earlier APR techniques based on
the redundancy assumption have shown that mining fix patterns
from existing codebase [11, 18] or even external Q&As from Stack-
Overflow [32] can serve as crucial repair ingredients for APR. Our
model, which is semi-parametric in nature, aims to combine both
benefits of the implicit (parametric) end-to-end program repair
learning and the explicit (non-parametric) fix pattern mining. One
distinction from prior fix pattern mining work is that we utilize the
top relevant bug-fix pair as a guiding fix pattern for a buggy patch
instead of clustering the fix templates with hand-crafted heuris-
tics. This retrieval-guiding strategy is also motivated by debugging
behaviours of program developers, who often search for relevant
bug-fix examples to distill some repair clues for bug fixing. Fig. 1
illustrates a motivating example, where we can find that the re-
trieved previous repair example informs a fix pattern of wrapping
the string with an “Error” object for the “throw” statement, which
guides the developer to fix the target bug under consideration.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon. Submission Id: 131

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

In addition, we propose to adapt a Transformer-based [66] encoder-
decoder model CodeT5 [67] as the unified foundation model of
RAP-Gen for both patch retrieval and generation tasks. CodeT5 is
a generic code-aware language model pretrained on large source
code corpora in eight popular programming languages (including
JavaScript and Java) curated from GitHub, achieving state-of-the-
art (SoTA) performance in both code understanding and generation
tasks. RAP-Gen adopts a stage-wise learning strategy to connect
the patch retriever and patch generator: the patch retriever first
searches for a relevant bug fix pattern and then pass it to the CodeT5
patch generator to synthesize a ranked list of fix patch candidates
based on both the source buggy code and the retrieved external
bug fix knowledge. While such retrieval-augmented generation
paradigm has been explored in other tasks such as question an-
swering [22] and code generation and summarization [44], we are
the first to investigate its effectiveness for APR systems based on
large-scale pretrained language models for code.

For the retrievers, we propose a hybrid approach that accounts
for both lexical and semantic matching through sparse (BM25 [54])
and dense (DPR [22]) retrieval based on the raw source code. We
employ CodeT5’s encoder as our dense DPR retriever and propose
to train it with a contrastive learning objective [64] using previous
bug-fix pairs as the fix patch often shares most of semantics with its
buggy patch. The dense DPR retriever is expected to capture deeper
code semantics while the sparse keyword-based BM25 retriever
focuses more on the lexical similarity which is sensitive to the
choice of naming for code identifiers. Notably, the hybrid retriever
is language-agnostic as it does not require any code-specific features
such as abstract syntax trees (ASTs). Experiments reveal that our
patch retriever is able to retrieve lexically and semantically relevant
fix patterns to guide APR systems.

We investigate the effectiveness of RAP-Gen in different APR
scenarios including JavaScript linter-raised diagnostics (TFix [4]),
Java bug-fix commits (Code Refinement [62]), and real Java bugs
accompanied with test cases in open source projects (Defects4J [21]).
Among these benchmarks, we formulate the APR problem as that
given a buggy code patch, the APR model learns to predict a fix
patch that repairs the bug from a codebase of previous bug-fix pairs
written by developers. The correctness of the predicted fix patches
are validated against either static analyzers (TFix) or unit testing
(Defects4J), or via a direct comparison with the ground-truth fixes
written by developers. Notably, fault localization (FL) information
may ormay not be provided for the APRmodel in these benchmarks.
We provide the perfect FL for TFix and consider both perfect or no
perfect FL (i.e. fault locations are predicted from spectrum-based
FL tools [53]) for Defects4J, while for on Code Refinement, no FL
information is provided and the model is required to implicitly
localize the bugs and simultaneously predict the fixes.

For evaluation, apart from the conventional metric of the correct
repair number by executing the fix patch against test suites, we
employ a comprehensive set of metrics to suit various APR sce-
narios. Specifically, we further use error removal accuracy based
on the detection result from static analyzers for JavaScript cod-
ing errors. Additionally, we employ exact match accuracy which
has been widely adopted [4, 20, 62] to ensure the correctness with
machine-generated patches based on developers’ real fix, as test
suites are often unavailable in many APR benchmarks especially for

the large-scale ones such as TFix and Code Refinement. From Fig. 4,
We showed that exact match as a strict metric is well aligned with
other looser metrics like error removal. Overall, extensive experi-
mental results show that our RAP-Gen significantly outperforms
existing DL-based methods on all these three APR benchmarks.

In summary, the paper makes the following contributions:
• We propose a novel retrieval-augmented patch generation

framework (RAP-Gen) for APR. It is a generic framework
that can be easily integratedwith any sequence-to-sequence
learning models. To the best of our knowledge, this is the
first work to leverage the power of retrieval in fix pattern
mining for DL-based APR systems.

• We present a hybrid patch retriever for fix pattern min-
ing that accounts for both lexical and semantic matching
through a combination of sparse and dense retrievers. It is
a language-agnostic patch retriever using raw source code
which does not require any code-specific features.

• We propose to adapt a generic pretrained code-aware lan-
guage model CodeT5 as a foundation model for RAP-Gen
to fix various bugs. Moreover, we leverage it for both patch
retrieval and generation task in a unified manner.

• We extensively evaluate RAP-Gen on three APR bench-
marks in JavaScript and Java. Results show RAP-Gen signif-
icantly outperforms SoTA DL-based methods on all bench-
marks. Particularly, our best model yields substantial im-
provements (49.70 → 54.15 on exact match accuracy and
69.30 → 78.80 on error removal accuracy) on TFix over the
previous SoTA T5-large model with a 3.5x larger model size
than ours. On Code Refinement, RAP-Gen sets new SoTA
exact match results of 24.80 and 15.84 over CodeT5’s 21.61
and 13.96 for the small and medium subsets. On Defects4J,
RAP-Gen achieves new SoTA performance, repairing 15
more bugs (110→ 125) with perfect FL and 6 more bugs (68
→ 74) without perfect FL than the previous SoTA models.

2 RELATEDWORKS
2.1 Automatic Program Repair
In the past decades, automatic program repair (APR) has attracted
growing attention and various APR techniques have been proposed
to reduce the manual efforts in debugging. A notable class of con-
ventional techniques for APR is known as search-based (or generate-
and-validate) approach [11, 18, 32, 49, 68, 70]. Earlier search-based
APR techniques are often based on program modification or mu-
tation with heuristic algorithm [49] or genetic programming [75]
to produce a large pool of candidate fixes for validating with unit
tests. The search strategy has been further extended to adopt fix
patterns mined using redundancy-based techniques [11, 18, 24, 32–
34, 70]. These approaches make a redundancy assumption [71] that
the fixed patch can often be reconstructed from elsewhere in the
codebase, which has been validated empirically by studies [3, 41]
showing that a significant proportion of commits (3%-17%) are
indeed composed of existing codebase. More redundancy-based
techniques have shown that mining fix patterns from existing code-
base [11, 18] or even external Q&As from StackOverflow [32] can
largely benefit APR systems.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program Repair ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Fix

Fix

Bug

Fix

Bug

Bug

Fix Bug

Figure 2: Retrieval-augmented patch generation (RAP-Gen) framework with CodeT5 for automatic program repair. We first
retrieve the relevant bug fix patterns from the codebase through our hybrid patch retriever which takes both lexical and
semantic similarity into account. We then concatenate the top-1 retrieved bug fix pattern with the query buggy patch for our
patch generator to synthesize a ranked list of fix patch candidates for developers to verify.

Recently, with the recent advancement in deep learning (DL)
approaches for natural language processing (NLP), many DL-based
APR techniques [4, 6, 19, 38, 62, 76] have been proposed to au-
tomate the program repair process in an end-to-end data-driven
manner. Motivated by the success of Neural Machine Translation
(NMT), these techniques often formulate APR as a sequence-to-
sequence NMT problem [56], which is to translate a buggy program
into a fixed version. Various neural architectures have been ex-
plored in learning-based APR techniques. Earlier techniques [6, 62]
are based on recurrent neural networks [15], which is further ex-
tended to convolution neural networks [10] in CoCoNuT [38] and
Transformer-based models [66] by many recent DL-based models
including TFix [4], CURE [19], Recoder [76], RewardRepair [73],
and SelfAPR [72]. Notably, many of these DL-based approaches
explore improving APR by leveraging code-specific features such
as abstract syntax trees (ASTs) [30, 76] and test execution diagnos-
tics [72, 73]. Specifically, Recoder [76] learns the syntax-guided
edits over the ASTs to ensure the syntactic correctness of the gen-
erated fix patch, while DEAR [30] uses tree-based Long Short-Term
Memory (LSTM) model [57] to better encode the code structure
and constructs a suitable fixing context using surrounding AST
subtrees. For the use of test execution information, SelfAPR [72]
encodes test execution diagnostics into the input representation,
while RewardRepair [73] improves APR with a loss function based
on both program compilation and test execution information.

In terms of APR benchmarks, the most popular one would be De-
fects4J [21], which contains real bug-fix patches from open source
GitHub projects and has been widely adopted by a large body of

APR work [19, 38, 72, 73, 76]. One notable feature of this bench-
mark is that it contains a test suite to validate whether the bugs
are fixed or not. However, as these APR approaches rely on test
cases, they are inapplicable to newly discovered bugs or bugs dif-
ficult to test for deterministically [65]. Additionally, it remains a
key challenge to obtain a large-scale APR dataset with test cases,
e.g., one of the largest one Defects4J only contains less than 1000
bugs and another popular one QuixBugs [31] only have 40 bugs.
To get rid of the requirement of test cases, there is another group
of APR research [4, 39, 43, 65, 74] focusing on static analysis bugs
or violations, which can be flagged by static analysis tools and is
easier to curate much more bug-fix data. Besides, another type of
APR [62] is based on the bug-fixing commits by checking whether
the commit comments contain some keywords such as “repair” and
“fix”. We consider all these types of APR use cases in this work.

2.2 Pretrained Language Models for Code
Pretrained language models (LMs) like GPT [51], BERT [7], and
T5 [52] have significantly boosted performance in a broad set of
NLP tasks. Inspired by their success, much recent work [1, 5, 9,
13, 37, 46, 67] attempts to adapt the NLP pretraining methods to
programming language. They often rely on either an encoder-only
BERT-style models (CodeBERT [9] and GraphCodeBERT [13]) or
decoder-only GPT-style models (CodeGPT [37] and Codex [5]),
or encoder-decoder models (PLBART [1] and CodeT5 [67]). Par-
ticularly, CodeT5 is a unified language model pretrained with a
code-aware pretraining objective on large-scale code corpora cov-
ering 8 different programming languages, which has been shown

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon. Submission Id: 131

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

to achieve SoTA performance on a wide range of code understand-
ing and generation tasks [37]. Compared to previous DL-based
APR approaches such as CURE [19] and TFix [4] that utilize LMs
pretrained primarily on natural language corpus, we propose to
leverage the code-aware LMs of CodeT5 [67] for APR with better
code understanding capability.

There are recent attempts [20, 48] to explore few-shot learning
of large language models (LLMs) for APR. According to Prenner
et al. [48], their method based on Codex achieves 46% EM compared
to the finetuned T5’s 59% on a random sample of 200 instances from
TFix, showing that there is still a gap between few-shot learning and
finetuning results. Besides, few-shot learning of LLMs requiresmore
engineering efforts for prompting tuning and post-processing [20],
which is labor-intensive. Another concern is that LLMs such as
Codex [5] are not open sourced and it might be expensive to use
their APIs, e.g., the Davinci version costs $0.02 for every 1K tokens1.

2.3 Retrieval-Augmented Generation
A general retrieval-augmented generation paradigm is comprised
of three components including information retrieval, data augmen-
tation and generation model [26]. It has been widely studied in
NLP and shown to achieve SoTA performance in a wide range
of NLP tasks including question answering and question genera-
tion [17, 25] and machine translation [12]. Inspired by their success,
much research work adapts this paradigm (also referred as retrieve-
and-edit/refine framework) to benefit software intelligence tasks, in-
cluding code autocompletion [14, 36], code summarization [27, 44],
and code generation [44].

3 APPROACH
We propose RAP-Gen, a novel retrieval-augmented patch genera-
tion framework for APR, which aims to improve APR performance
by leveraging a relevant bug fix pattern retrieved from a codebase of
previous bug-fix pairs. As shown in Fig. 2, our RAP-Gen framework
consists of three stages: 1) a patch retriever training stage to learn
a hybrid retriever that can find relevant code patches based on the
lexical and semantical similarity; 2) a patch generator training stage
to train a CodeT5 model to produce the fix patch based on both
buggy input and retrieved bug-fix examples; 3) an inference stage
to predict multiple fix patches where the top-ranked one will be
passed to developers for verification.

Note that while retrieval-augmented generation techniques have
been explored in many NLP tasks [17, 25], it is not trivial to adapt
such techniques to APR tasks and requires systematic adaptation
to address some unique challenges. The first challenge is how to
retrieve relevant fix patterns for effectively guiding APR, where
we build a hybrid retriever based on both lexical and semantic in-
formation, which is analyzed and compared with other retrievers
in Table 8. The second challenge is how to build a top-performing
APR model for various languages and APR scenarios. We leverage
a language-agnostic pretrained model CodeT5 for both retrieval
and patch generation, which is a more unified approach compared
to prior work [36, 44] requiring a different retriever and genera-
tor. This is the first work to explore CodeT5 for unified retrieval-
augmented generation.
1https://openai.com/api/pricing/

In the remainder of this section, we first introduce the task for-
mulation of the retrieval-augmented patch generation for program
repair in Section 3.1 and then revisit fundamental components of
CodeT5 in Section 3.2, followed by detailing the two components
of our approach: the hybrid patch retriever in Section 3.3 and the
retrieval-augmented patch generator in Section 3.4.

3.1 Task Formulation
Let D = {(𝑋𝑖 , 𝑌𝑖)} |D |

𝑖=1 be a program repair dataset consisting
of |D| bug-fix pairs (𝑋𝑖 , 𝑌𝑖), where 𝑋𝑖 and 𝑌𝑖 are the 𝑖-th buggy
and fixed program patch, respectively. Assume that we have a
codebase containing a large collection of previous bug-fix pairs
C = {(𝐵 𝑗 , 𝐹 𝑗)} | C |

𝑗=1, where (𝐵 𝑗 , 𝐹 𝑗) denotes the 𝑗-th previous bug-fix
pair. Given a buggy program patch 𝑋𝑖 in D, a retriever retrieves
the most relevant bug-fix pair (𝐵 𝑗 , 𝐹 𝑗) in the codebase C based on a
relevance scoring function 𝑓𝜙 (𝑋𝑖 , 𝐵 𝑗) parameterized by 𝜙 . Then the
original input sequence 𝑋𝑖 is augmented with the retrieved bug-fix
pair to form a new input sequence 𝑋𝑖 = 𝑋𝑖 ⊕ 𝐵 𝑗 ⊕ 𝐹 𝑗 , where ⊕
denotes the concatenation operation. The sequence-to-sequence
(seq2seq) generator then generates 𝑌𝑖 from 𝑋𝑖 in an autoregressive
manner. Formally, we aim to learn the following probability with
the patch seq2seq generator parameterized by 𝜃 :

𝑃𝜃 (𝑌𝑖 |𝑋𝑖) =
𝑛∏

𝑘=1
𝑃𝜃 (𝑌𝑖,𝑘 |𝑋𝑖 , 𝑌𝑖,1 : 𝑌𝑖,𝑘−1)

where 𝑌𝑖,1 : 𝑌𝑖,𝑘−1 is the previous sequence before the 𝑘-th token
and 𝑛 denotes the number of tokens in the target sequence 𝑌𝑖 .
Note that we regard the external codebase C as a non-parametric
memory and the retrieved bug-fix pair as a guiding fix pattern for
the generator. In probabilistic terms, the retrieval can be formulated
as a latent variable 𝑍 𝑗 = (𝐵 𝑗 , 𝐹 𝑗), which is approximated by top-1
in our case. Formally, the probability can be decomposed as:

𝑃 (𝑌𝑖 |𝑋𝑖) =
| C |∑︁
𝑗=1

𝑃𝜙 (𝑍 𝑗 |𝑋𝑖)︸ ︷︷ ︸
Retriever

𝑃𝜃 (𝑌𝑖 |𝑋𝑖 , 𝑍 𝑗)︸ ︷︷ ︸
Generator

≈ 𝑃𝜃 (𝑌𝑖 |𝑋𝑖 , 𝑍 ∗
𝑗)

where 𝑍 ∗
𝑗
is the top-1 retrieved output from the retriever 𝑃𝜙 (𝑍 𝑗 |𝑋𝑖).

We adopt such top-1 approximation as marginalization over large 𝑘
makes the training and inference complicated and inefficient [25].
We also tried to employ top-𝑘 (𝑘 = 2, 3, 5) with the Fusion-in-
Decoding or FiD method [17] but did not observe a salient per-
formance improvement.

3.2 Revisiting CodeT5
CodeT5 [67] is a unified pretrained Transformer-based encoder-
decoder language model that achieves SoTA results in both code
understanding and generation tasks. It is pretrained on 8.3 mil-
lion functions in 8 different programming languages (i.e., Ruby,
JavaScript, Go, Python, Java, PHP, C, C#) collected from GitHub.
CodeT5 employs a set of identifier-aware pretraining objectives to
incorporate the code-specific knowledge into the language model.
In this work, we adapt CodeT5 as our dense DPR retriever and patch
generator to harness its powerful code understanding capability.

4

https://openai.com/api/pricing/

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program Repair ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

BPE Subword Tokenization. One benefit of using CodeT5 is
that it provides a code-specific Byte-Pair Encoding (BPE) [55] to-
kenizer. It can avoid the prevalent Out-of-Vocabulary (OoV) prob-
lems in the code domain as programmers tend to write arbitrary
identifiers [28] and it is impossible to build a fixed vocabulary to ac-
commodate arbitrary tokens (commonly known as open vocabulary
problem [55]). BPE is an algorithm that learns how to efficiently
split tokens into subwords based on their frequency distribution.
It can also help reduce the vocabulary size as it will split rare to-
kens into multiple subwords instead of directly adding the whole
tokens into the vocabulary. Additionally, as the CodeT5 tokenizer
is pretrained and optimized for eight popular programming lan-
guages, the resulting tokenization generalizes well. As pointed out
by [67], it reduces the tokenized sequence by 30% - 45% on average
compared to the default T5 tokenizer [52].

Encoder and Decoder Architecture. CodeT5 consists of a stack
of Transformer layers [66] for its encoder and decoder. Each Trans-
former layer contains a multi-head self-attention for feature aggre-
gation followed by a feed forward layer over the output of previous
layer. The final layer produces the hidden states for all input tokens,
which can be employed as the code presentation for classification
or generation tasks. For the CodeT5 encoder, it utilizes bidirectional
attention masks to learn better contextualized representation simi-
lar to BERT [7], while the CodeT5 decoder employs causal attention
masks to ensure each token can only attend to the previous tokens
for better sequence generation. In RAP-Gen framework, we adapt
the CodeT5 as the patch generator and its encoder specifically for
the dense retriever.

3.3 Hybrid Patch Retriever
The retriever module in RAP-Gen aims to retrieve relevant fix
patterns to guide the APR process. It builds on a relevance scoring
function 𝑓𝜙 (𝑋𝑖 , 𝐵 𝑗) to compute the relevance between the (query)
bug 𝑋𝑖 in D and a previous (key) bug 𝐵 𝑗 in the codebase C. As
shown in 2 1, we utilize a hybrid approach to combine a lexical-
based BM25 [54] retriever and a semantic-based DPR [22] retriever
to take both lexical and semantic information into account. Prior
work like [22] show that sparse and dense retriever can complement
each other for more robust text retrieval.

Lexical-based Retriever. We employ BM25 [54], a well-known
term-based retriever that uses sparse vector representation for
lexical matching. BM25 converts each code patch as bag-of-words
representation and computes a lexical similarity between the query
patch𝑋𝑖 and a candidate patch 𝐵 𝑗 . The computed similarity score is
represented as 𝑓𝜙 (𝑋𝑖 , 𝐵 𝑗) = 𝐵𝑀25(𝑋𝑖 , 𝐵 𝑗). As a sparse term-based
retriever, BM25 is sensitive to the choice of identifier naming in
source code which does not impact the code semantics.

Semantic-based Retriever. We employ Dense Passage Retriever
(DPR) [22] to retrieve relevant patches via measuring their semantic
similarity. To encode the code patch, we use a Transformer-based
encoder to map each patch to a fixed-size dense vector. Specifically,
we initialize the DPR from a pretrained CodeT5 encoder and train it
for a code-to-code retrieval task. For training the DPR, we propose
to use the bug-fix pairs in the codebase by considering the buggy
code 𝐵 𝑗 as the query and the corresponding fixed code 𝐹 𝑗 as the

key. This is based on the assumption that the buggy patch and its
fixed patch often shares similar semantics (e.g., identifiers and code
structures). This trick avoids the massive manual annotation efforts
needed to curate a bug-to-bug search dataset.

For each query patch and candidate patch, we prepend a special
token of [CLS] into its tokenized sequence and employ the final
layer hidden state of the [CLS] token as the patch representation.
We use a shared DPR to separately encode the query patch 𝑋𝑖 in
D and a candidate patch 𝐵 𝑗 in C as𝐶𝐿𝑆𝑋𝑖

and𝐶𝐿𝑆𝐵 𝑗
, respectively.

Then the similarity is computed by the inner product between these
two patch representations as the following:

𝑓𝜙 (𝑋𝑖 , 𝐵 𝑗) = 𝑠𝑖𝑚(𝑋𝑖 , 𝐵 𝑗) = [𝐶𝐿𝑆𝑋𝑖
]𝑇 [𝐶𝐿𝑆𝐵 𝑗

]

For training the DPR retriever, we leverage the in-batch negatives
to optimize an InfoNCE contrastive loss [64] defined as follows:

LinfoNCE =
1
𝑁

𝑁∑︁
𝑖=1

− log
exp(𝑠𝑖𝑚(𝐵𝑖 , 𝐹𝑖))

exp(𝑠𝑖𝑚(𝐵𝑖 , 𝐹𝑖)) +
∑

𝑗∈M, 𝑗≠𝑖 exp(𝑠𝑖𝑚(𝐵𝑖 , 𝐹 𝑗))

where M is the current minibatch and 𝑁 denotes the number of
positive training examples in the minibatch. This objective aims
to maximize the similarity between positive examples while min-
imizing the similarity between negative examples. Each positive
example will have |M| − 1 negative samples. Note that we do not
adopt the hard negative mining strategy as in [22] due to the noisy
nature of the training data.

In the inference stage, given a query buggy patch 𝑋𝑖 , the DPR
retrieves a relevant bug-fix pair (𝐵 𝑗 , 𝐹 𝑗) by computing the similarity
between 𝑋𝑖 (query) and 𝐵 𝑗 (key). We also tried to base on the
similarity between 𝑋𝑖 and 𝐹 𝑗 but it did not yield better results.

Hybrid Retriever. To take both lexical and semantic information
into account, we utilize a hybrid approach following [22] to combine
the BM25 and DPR. The similarity score is computed as 𝑓𝜙 (𝑋𝑖 , 𝐵 𝑗) =
𝑠𝑖𝑚(𝑋𝑖 , 𝐵 𝑗) + 𝜆 BM25(𝑋𝑖 , 𝐵 𝑗), where 𝜆 is a weight to balance the
two retrievers and was empirically set to 1 in our experiment. Based
on this combined similarity score, we select the top-1 relevant bug-
fix pair (𝐵 𝑗 , 𝐹 𝑗) as a fix pattern to guide the patch generator for bug
fixing. The hybrid retriever is expected to be more robust compared
to retrievers that rely only on either lexical or semantic information.

3.4 Retrieval-Augmented Patch Generator
As shown in Fig. 2 2, given a buggy patch 𝑋𝑖 , we search for a top
relevant fix pattern (𝐵 𝑗 , 𝐹 𝑗) and pass it to the patch generator to
generate a fixed code patch 𝑌𝑖 . We adopt a simple yet effective
strategy to augment 𝑋𝑖 into 𝑋𝑖 = 𝑋𝑖 ⊕ 𝐵 𝑗 ⊕ 𝐹 𝑗 via appending the
retrieved bug-fix pair into the source buggy patch. Note that the
patch generator module can be any sequence generation model.
Different from prior studies that directly adopt a generator opti-
mized on natural language [4], we propose to employ CodeT5, a
code-aware programming language model optimized for code.

Training. We prepare the retrieval-augmented input to CodeT5
patch generator as𝑋𝑖 = “[CLS]X𝑖 [BUG]𝐵 𝑗 [FIX] 𝐹 𝑗 ”, where [BUG]
and [FIX] are special tokens to separate the retrieved bug-fix pair
from the buggy patch. CodeT5’s encoder takes𝑋𝑖 as input and emits
the fixed patch 𝑌𝑖 from its decoder in an autoregressive manner
(see Section 3.1). We consider two settings of the buggy patch 𝑋𝑖

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon. Submission Id: 131

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Error Information :
fix guard-for-in The body of a for-in should be wrapped in an if
statement to filter unwanted properties from the prototype.
Patch Difference :

} for (i = 0; i < data.updates.length; i++) {

 ext = data.updates[i];

} for (e in data.updates) {
 if (data.updates.hasOwnProperty(e)) {

ext = data.updates[e];

Buggy Code :
var e, ext; for (e in data.installs) {

ext = data.installs[e];
Fixed Code :
var e, ext; for (e in data.installs) {

if (data.installs.hasOwnProperty(e)) {
ext = data.installs[e];

(a) TFix (b) Code Refinement (c) Defects4J (Chart-9)

So
ur

ce
 In

pu
t

R
et

rie
va

l
C

od
eT

5
R

A
P-

G
en

Patch Difference :

if (endIndex < 0 || (endIndex == 0 && startIndex < endIndex)) {

if (endIndex < 0 || (endIndex - startIndex) < 0) {

Buggy Code :
else if (changeIndex < endIndex) {

if (changeType == ListEvent.INSERT) {
endIndex++;
updates.addInsert(changeIndex - startIndex);

}
Fixed Code :

updates.addUpdate(changeIndex - startIndex);

 public class TimeSeries extends Series implements Cloneable, Serializable {
 endIndex = -(endIndex + 1); // this is first item AFTER end period
 endIndex = endIndex - 1; // so this is last item BEFORE end }
- if (endIndex < 0) {
+ if ((endIndex < 0) || (endIndex < startIndex)) {
 emptyRange = true;
} if (emptyRange) {

Patch Difference :

private synchronized void METHOD_1 (java.lang.String VAR_1) {
if (VAR_1 != null) {

TYPE_1 . i (VAR_2 , (STRING_1 + VAR_1)) ;
VAR_3 = VAR_1 ; } }

private synchronized void METHOD_1 (java.lang.String VAR_1) {
VAR_3 = VAR_1 ;

}

Buggy Code :
public void METHOD_1 (java.lang.String VAR_1) {

TYPE_1 . i (VAR_2 , ((STRING_1 + VAR_1) + STRING_2)) ;
VAR_3 = VAR_1 ; }

Fixed Code :
public void METHOD_1 (java.lang.String VAR_1 {

VAR_3 = VAR_1 ; }

 private synchronized void METHOD_1 (java.lang.String VAR_1) {
- TYPE_1 . i (VAR_2 , (STRING_1 + VAR_1));

+
VAR_3 = VAR_1 ;

 }

Figure 3: Bug fix examples on three APR benchmarks, where RAP-Gen successfully fix bugs while CodeT5 fails to do so.

where it may or may not contain bug localization information. If
it contains error information like error type, error message, and
error line, the buggy patch will be augmented to “error information
[SEP] 𝑋𝑖 ” to incorporate error information to help fix the bugs. To
train the patch generator, we adopt teacher forcing [61] to minimize
the cross entropy loss L𝑐𝑒 over all training instances defined as:

L𝑐𝑒 = −
|D |∑︁
𝑖=1

log(𝑃𝜃 (𝑌𝑖 |𝑋𝑖))

In teacher forcing, the decoder uses ground-truth context for faster
convergence. We use the training set as the search codebase follow-
ing [44]. To avoid information leakage, we do not allow the retriever
to access the ground-truth bug-fix pair, otherwise the training loss
would easily drop close to 0 as the generator can directly copy the
retrieved fix as the target output. This strategy makes the training
and evaluation process more compatible as the evaluation sets are
not overlapped with the training set as well.

Inference with Beam Search. During inference, as shown in
Fig. 2 3, we employ beam search to generate a ranked list of fixed
patch candidates for an input buggy patch, where the number of
predictions is determined by the beam size B. Concretely, at each
decoding timestep, the beam search selects the most B promising
fix candidates with the highest probability using a best-first search
strategy. The search process is terminated when an [EOS] token
notifying the end of sentence is emitted. The top ranked fix patch
will be examined for its correctness by comparing with ground-
truth fix patches or by validating against test suites, or by manual
verification by software developers.

4 EXPERIMENTAL DESIGN
We describe the studied datasets and its comparison baselines and
evaluation metrics, followed by detailing implementation details,
and research questions in the section.

4.1 Dataset
We evaluate RAP-Gen on three APR datasets, namely TFix [4] in
JavaScript, Code Refinement [62] and Defects4J (v1.2) [21] in Java.
All datasets are originally collected from open source GitHub com-
mits but based on different criteria for bug identification, where
TFix is based on diagnostics from a JavaScript static analyzer, Code
Refinement is based on repair-related commit message, and De-
fects4J is based on running the test suites. We report their data
statistics in Table 1.

4.1.1 TFix. TFix [4] is a large-scale program repair dataset com-
prising JavaScript code patch pairs curated from 5.5 million GitHub
commits. It includes 52 error types (see Table 4) detected by a static
analyzer ESLint2 [60]. In addition to error types, it provides rich
error annotations such as error message and localized error line so
that there is no need for fault localization like prior work [19, 76].
To prepare the input sequence, as illustrated in Fig. 3(a), we fol-
low [4] to combine all error information together with the buggy
code patch into a single piece of text as the following:

fix {error type} {error message} {error context:
Code Line N-1 + Buggy Line N + Code Line N+1}

where error context consists of the given localized error line and
its two neighboring code lines to form a buggy code patch. For the
target sequence, it is obtained by replacing the error line into a
fixed line in the error context. During data processing, we observed
a duplication issue inside each data split and between data splits.
Specifically, there are 114, 2, and 4 duplicates in the train, validation,
and test split respectively, and 28, 34, and 4 duplicates for inter-split
duplicates between train and test, train and test, validation and
test splits respectively. We filtered all these 243 duplicates to get a
deduplicated version of TFix as shown in Table 1.

Baseline Models.We compare RAP-Gen with existing DL-based
APR models including SequenceR [6] and CoCoNuT [38]. Besides,

2https://eslint.org/

6

https://eslint.org/

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program Repair ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Statistics of three program repair benchmarks.

Benchmark Version Train Valid Test

TFix Original 84,846 9,454 10,504
TFix Deduplicated 84,673 9,423 10,465
Code Refinement Small 46,680 5,835 5,835
Code Refinement Medium 52,364 6,545 6,545
Defects4J v1.2 830,240 - 388
Defects4J v2.0 830,240 - 430

we compare a large pretrained model T5-large [52] which has been
finetuned on TFix to achieve the SoTA performance by [4].

Evaluation Metrics. We report Exact Match (EM) accuracy and
BLEU-4 score to evaluate program repair performance follow-
ing [67] on TFix. BLEU-4 is a looser metric to evaluate the degree
of subword overlapping while EM is a more strict metric requiring
the prediction to be identical to the ground-truth patch in a real
commit. As a buggy program might have different ways to repair,
we further employ Error Removal metric following [4] to take
various forms of fixes into account. The prediction is counted as
correct for Error Removal if the existing error is removed and no
new errors (detected by the static analyzer ESLint) is introduced
after the fix. For all metrics, we present their results on a scale of
0-100 (%) and a higher score represents better performance.

4.1.2 Code Refinement. Code Refinement [62] contains bug-fix
pairs at the function level, which are originally collected from
public GitHub Archive3 between March 2011 and October 2017.
They use Google BigQuery APIs to identify all Java commits having
a message containing the patterns: (“fix” or “solve”) and (“bug”
or “issue” or “problem” or “error”) to ensure the quality of the
collected bug-fix function pairs. They normalized the functions via
obfuscating identifiers with indexed tokens such as TYPE1, VAR1,
METHOD1, etc. One data example can be found in Fig. 3 (b). The
dataset contains two data subsets which are determined by the
number of tokens, i.e., # of code tokens ≤ 50 for the small set and
50 < # of code tokens ≤ 100 for the medium set. Since the bug
localization is not provided, the entire code fragment is taken as
the source input sequence of our model. The target sequence is the
refined version of the whole code snippet.

Baseline and Metrics. We compare our RAP-Gen with pretrained
programming language models based on Transformers [66]. One
group of these models is the encoder-only models such as RoBERTa
(code), CodeBERT [9], and GraphCodeBERT [13]. These encoder-
only models require a randomly initialized decoder to generate the
fix. Besides, we compare with encoder-decoder Transformer models
such as PLBART [1] and CoTexT [46]. NSEdit [16] is a language
model with encoder and decoder initialized from CodeBERT and
CodeGPT [37] respectively. It is finetuned to generate the fix via a
neural-symbolic editing sequence and ranks as the current SoTA
model on Code Refinement. We follow [67] to apply BLEU-4 and
Exact Match to evaluate the Code Refinement datasets.

4.1.3 Defects4J. Defects4J [21] has been one of the most widely
adopted APR benchmarks, which contains 835 real bug-fix patches

3https://www.gharchive.org/

Table 2: Comparison results of CodeT5 on the original TFix.

Model EM w/ spaces EM w/o spaces

Avg. W. Avg. Avg. W. Avg.

Naive Copy 0.00 0.00 0.00 0.00
SequenceR 17.90 - - -
CoCoNuT 11.70 - - -
T5-small 44.46 44.44 44.52 44.60
T5-base 48.54 47.63 48.72 47.70
T5-large 49.33 49.65 49.35 49.70

CodeT5-small 47.14 46.35 50.22 50.31
- error-information 45.97 45.80 49.26 49.70
CodeT5-base 50.88 49.42 54.30 53.57
- error-information 46.88 47.17 50.36 51.25

in 17 open source GitHub projects. Each bug-fix example is accom-
panied with test cases to validate the fix. One example of Defects4J
bugs can be found in Fig. 3(c), where “-” denotes a buggy line to be
fixed and “+” represents the correct fix committed from a developer.
A buggy line and its corresponding code context are combined to
form the source input sequence while the target sequence is the
fixed line. As Defects4J only has the test set, we use the project-
specific training data curated by SelfAPR [72] using self-supervised
learning methods. Specifically, Ye et al. [72] proposes 16 pertur-
bation rules on the correct past version of Defects4J to construct
1,039,873 synthetic bug-fix Java patches. We use a subset of 830,240
training data that is available online.4 For testing, we follow their
exact settings to evaluate our models on 818 bugs from both De-
fects4J v1.2 and v2.0 (Table 1), which covers both settings with
ground-truth fault localization (perfect FL) and with predicted FLs
from spectrum-based FL tools such as Gzoltar [53].

Baselines and Metrics. We compare RAP-Gen with a broad set of
SoTADL-basedAPRmodels including SequenceR [6], CoCoNuT [38],
CURE [19], RewardRepair [73], Recoder [76], DLFix [29], DEAR [30],
BugLab [2], and SelfAPR [72]. For evaluation, we compute how
many bugs can be correctly fixed on Defects4J based on unit testing
and manual verification following prior work. We first run test
suites to automatically identify plausible correct patches for each
bug, followed by manual checking to completely verify its correct-
ness. The correct predictions from our RAP-Gen are included in
our artifact. For results of baselines, we cite the results of DLFix
and DEAR from DEAR [30], and other results from SelfAPR [72].

4.2 Implementation Details
We implement RAP-Gen using the deep learning framework Py-
Torch and train it with AdamW [35] optimizer. For the training of its
neural components, we run these experiments with NVIDIA A100-
40G GPUs on the Google Cloud Platform. For each benchmark,
we finetune a DPR retriever for 50 epochs using the contrastive
loss LinfoNCE using a batch size of 64 and a learning rate of 2e-5.
We finetune RAP-Gen generator for 30 epochs using a sequence
generation loss L𝑐𝑒 using a batch size of 32 with a learning rate
of 5e-5. These best settings are obtained through a grid search for
hyper-parameter tuning: batch size in (16, 32, 64) and learning rate
4https://github.com/ASSERT-KTH/SelfAPR/tree/main/dataset

7

https://www.gharchive.org/
https://github.com/ASSERT-KTH/SelfAPR/tree/main/dataset

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon. Submission Id: 131

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Performance of RAP-Gen on the deduplicated TFix.
Results of T5-large and CodeT5-base are different from Ta-
ble 2 due to the deduplication.

Model EM BLEU-4

T5-large (TFix) 49.58 76.96
CodeT5-base 53.46 78.92

RAP-Gen 54.15 79.66

in (1e-4, 5e-5, 2e-5). The training time of DPR retriever is 5-9 hours
depending on the training size of the dataset, and the training time
of RAP-Gen generator is within 2 days. For lexical-based retrievers,
we use an open-sourced Python library5 of BM25, which can be
efficiently trained on CPU within one hour with multi-processing.
During inference, we employ beam search with a beam size of 5 for
the TFix and Code Refinement, and 100 for the Defects4J.

For the foundation model of RAP-Gen, we adopt CodeT5 [67]
to leverage its encoded general code understanding knowledge.
We initialize the patch generator with CodeT5-base and the DPR
retriever with its encoder. CodeT5-base contains 12 encoder layers
and 12 decoder layers with the parameter size of 220M. We use
CodeT5 to refer to this version unless specified with a size tag.

4.3 Research Questions
To investigate the effectiveness of RAP-Gen on APR tasks, we seek
to answer the following research questions (RQs):
RQ1: Comparative study with DL-based APRmodels on TFix.
How does RAP-Gen perform to repair JavaScript linter-flagged cod-
ing errors on TFix compared with other DL-based APR approaches?
RQ2:Analysis of RAP-Gen predictions onTFix.Howdoes RAP-
Gen repair TFix bugs for different error types and patch lengths?
What fix operations do RAP-Gen adopt in repairing bugs?
RQ3: Comparative study with DL-based APRmodels on Code
Refinement. How does RAP-Gen perform to repair Java commit-
related bugs compared with other DL-based APR approaches?
RQ4: Analysis of our hybrid patch retriever. Can our hybrid
patch retriever find relevant fix pattern to guide APR?
RQ5: Comparative study with DL-based APR models on De-
fects4J? How does RAP-Gen perform to repair Java bugs in open
source projects compared with other DL-based APR approaches?

5 EXPERIMENTAL RESULT
5.1 RQ1: Comparative study with DL-based APR

models on TFix
5.1.1 Improved TFix Evaluation. The original TFix benchmark em-
ploys the direct average of exact match (EM) accuracy across 52
error types as the main metric. However, as shown in the Table 4,
these error types have a rather imbalanced distribution, e.g., the
major error type “no-invalid-this” has 16,166 instances while the
least error type “no-new-symbol” has only 10 instances. As such, it
is more reasonable to employ the weighted average to take the error
type distribution into account. Besides, we spot another limitation
of its exact match evaluation that if the predicted fix contains one

5https://pypi.org/project/rank-bm25

Table 4: Performance breakdown on 52 error types on TFix.

Error Type #Samples T5-large RAP-Gen Error Type #Samples T5-large RAP-Gen

no-new-symbol 10 100.00 100.00 no-extra-bind 674 70.59 73.53
no-compare-neg-zero 13 0.00 0.00 no-case-declarations 723 58.90 67.12
no-ex-assign 40 25.00 25.00 no-fallthrough 743 76.00 77.33
for-direction 50 40.00 60.00 no-inner-declarations 830 38.10 46.43
no-unsafe-finally 63 42.86 14.29 no-array-constructor 980 86.73 85.71
use-isnan 71 37.50 25.00 no-constant-condition 1,251 48.78 54.47
no-class-assign 111 41.67 50.00 generator-star-spacing 1,396 67.86 72.86
no-dupe-class-members 117 8.33 8.33 no-extra-boolean-cast 1,458 54.11 58.22
no-func-assign 147 46.67 60.00 no-cond-assign 1,472 45.21 47.95
no-empty-pattern 178 27.78 44.44 no-process-exit 1,514 32.89 37.50
no-unused-labels 187 52.63 63.16 no-empty 2,055 26.70 31.55
no-duplicate-case 195 65.00 60.00 no-dupe-keys 2,181 53.42 55.25
getter-return 203 52.38 61.90 prefer-spread 2,466 45.08 45.49
no-sparse-arrays 237 25.00 45.83 no-useless-escape 2,920 35.15 40.61
no-const-assign 277 35.71 42.86 no-console 3,067 73.62 73.94
no-global-assign 318 59.38 68.75 guard-for-in 3,231 41.98 45.37
no-new-wrappers 360 27.78 38.89 no-throw-literal 4,075 72.06 74.51
no-this-before-super 413 47.62 69.05 no-debugger 4,164 94.48 94.24
no-unsafe-negation 423 72.09 76.74 prefer-rest-params 4,534 35.68 43.61
require-yield 429 72.09 76.74 no-unreachable 4,725 63.85 64.69
no-extend-native 443 31.11 26.67 no-extra-semi 5,969 82.61 83.61
no-new-object 446 71.11 66.67 no-redeclare 6,381 49.45 59.78
no-caller 446 20.00 22.22 comma-style 6,395 46.48 52.11
constructor-super 464 59.57 70.21 no-unused-vars 7,765 51.87 56.11
valid-typeof 539 51.85 51.85 no-undef 10,636 22.65 27.35
no-self-assign 610 34.43 44.26 no-invalid-this 16,166 37.48 44.13

Sum/W. Avg. 104,561 49.58 54.15

Error Removal Exact Match BLEU-440

50

60

70

80

90

Te
st

 R
es

ul
ts

78.80

55.17

80.36

69.30

50.73

77.99

RAP-Gen T5-large

Figure 4: Error removal comparison on TFix, where error
removal is well aligned with exact match and BLEU-4 scores.

more whitespace such as a space or new line than the ground-truth
fix, it would be regarded as a wrong exact match. However, extra
whitespaces do not impact the correctness for JavaScript programs.
Therefore, we propose to use the weighted average of EM w/o
spaces, which normalizes the whitespaces before computing the
EM to exclude the effects of the mismatch in whitespaces. As we
find there is a duplication issue in the TFix dataset, we also report
the results on its deduplicated version.

5.1.2 CodeT5 Results. We compare CodeT5 models with other DL-
based baselines on TFix and show results in Table 2. For the original
metric of average EM w/ spaces, CodeT5-base (50.88) also yields a
better accuracy than T5-large (49.33), given that it has much larger
model size (∼ 3.5× of CodeT5-base: 770M vs. 220M). If we focus on a
more reasonable average EM w/o spaces, CodeT5-base significantly
boost the performance, with around 5 absolute accuracy improve-
ment (49.35→54.30) over T5-large. Based on the weighted average
EM w/o spaces, both CodeT5-small (50.31) and CodeT5-base (53.57)
outperform all the baselines including T5-large (49.70). This shows
CodeT5 models with code-aware pretraining on large-scale source
code have a better understanding of program. For TFix evaluation,
we employ EM to denote the weighted average EM w/o spaces. We
perform an ablation study to remove the error information includ-
ing error type and error message from the input sequence, where
we observe both CodeT5-small and CodeT5-base models have a
consistent performance downgrade, revealing that it is helpful to
inform which types of error they need to fix for APR models.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program Repair ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 5: Analysis of error line removal operation on TFix.

T5-large CodeT5 RAP-Gen

Ground-truth EL Removal 2,381 2,381 2,381
Predicted EL Removal 1,882 1,925 1,922
Correct EL Removal 1,811 1,858 1,866
False Positive 71 67 56

Precision (%) 96.23 96.52 97.09
Recall (%) 76.06 78.03 78.37
F1 (%) 84.96 86.30 86.73

20 40 60 80 100 120
Number of tokens

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

(a)

Exact Match
RAP-Gen Correct
RAP-Gen Wrong

20 40 60 80 100 120
Number of tokens

0

50

100

150

Nu
m

be
r o

f c
or

re
ct

 fi
x

(b)
Exact Match

RAP-Gen
T5-large

Figure 5: (a): cumulative fraction of programs by number
of tokens in the source buggy patch, grouped by whether
RAP-Gen can accurately fix. (b): distribution of correct fix
over number of tokens for RAP-Gen and T5-large.

5.1.3 RAP-Gen Results. We report the results of our RAP-Gen
model on the deduplicated TFix benchmark in Table 3, where the
results are slightly different due to data size changes after duplica-
tion. Results show that RAP-Gen significantly outperforms T5-large
(49.58→54.15 EM). This indicates retrieval-augmented generation
is a viable and effective approach for APR and both semantic infor-
mation and lexical information are crucial to retrieve relevant fix
patterns. We present one case in Fig. 3 (a), where we can observe
RAP-gen successfully repairs the bug with the guidance of retrieved
fix pattern while CodeT5 without retrieval gives a wrong fix.

5.1.4 Error Removal Evaluation. Though exact match can ensure
correctness of machine-generated patches, it might be a too strict
metric to consider other forms of correct fixes. Therefore, we fol-
low [4] to employ the error removal metric, where a fix is counted as
correct if the error is removed and no new error is introduced. The
error detection is based on a static analyzer ESLint. We report error
removal together with EM and BLEU-4 results on a large subset of
6,793 instances6 in Fig. 4. We observe that RAP-Gen significantly
improves error removal accuracy over T5-large (69.30→78.80). The
larger gain compared to EM and BLEU-4 implies that RAP-Gen is
more capable of producing various forms of good fixes. Additionally,
EM is well aligned with the looser metric of error removal.

5.2 RQ2: Analysis of RAP-Gen Predictions on
TFix

5.2.1 Performance Breakdown on Error Types. We list the perfor-
mance breakdown for 52 error types on the deduplicated TFix in
Table 4. RAP-Gen outperforms the previous SoTA T5-large in 40/52
error types. Especially for the major error type “no-invalid-this”,
6Some source files are unavailable to reproduce this metric on the full test set.

Table 6: Performance of RAP-Gen on the Code Refinement.

Model Small Medium

EM BLEU-4 EM BLEU-4

Naive Copy 0.00 78.06 0.00 90.91
LSTM 10.00 76.76 2.50 72.08
Transformer 14.70 77.21 3.70 89.25
RoBERTa (code) 15.90 77.30 4.10 90.07
CodeBERT 16.40 77.42 5.16 91.07
GraphCodeBERT 17.30 80.02 9.10 91.31
PLBART 19.21 77.02 8.98 88.50
CoTexT 21.58 77.28 13.11 88.40
NSEdit 24.04 71.06 13.87 85.72
CodeT5 21.61 77.43 13.96 87.64

RAP-Gen 24.80 78.28 15.84 90.01

RAP-Gen improves its exact match from T5-large’s 37.48 to 44.13,
corresponding to repair more 107 instances. In total, RAP-Gen cor-
rectly repairs more 478 bugs than T5-large with a much smaller
model size.

5.2.2 Fix Operation Analysis. We analyze what fix patterns are per-
formed by our models on TFix. We observe a large proportion of fix
consists of deletion operations compared to the code insertion and
replacement operations. We find that fix operations consist of code
insertion (12.5%), replacement (8.1%), deletion (47.9%), insertion and
replacement (6.9%), insertion and deletion (8.2%), replacement and
deletion (7.2%), and all three manners (9.2%). Earlier studies [50, 59]
also reflect that the deletion operation is one of the most common
fix patterns. Besides, we find one dominating fix operation is error
line (EL) removal, which is to simply remove the error line from
the buggy code and accounts for around 23% in the test set. We
show how models perform this operation in Table 5. We observe
RAP-Gen achieves the best precision, recall, and F1 scores with
a lowest false positive count of 56 compared to CodeT5’s 67 and
T5-large’s 71. This indicates that RAP-Gen is able to learn more
diverse bug fix patterns instead of over relying on the trivial error
line removal pattern.

5.2.3 Patch Length Analysis. We analyze how the patch length
influences the APR performance. Fig. 5 (a) shows the cumulative
fraction of buggy patches by its patch length grouped based on
their outcome. We find the patches successfully repaired by RAP-
Gen tend to be shorter than those where it fails. Fig. 5 (b) shows
the distribution of correct fixes by its buggy patch length, where
RAP-Gen can repair more bugs than T5-large especially for patches
with 40 to 60 tokens.

5.3 RQ3: Comparative study with DL-based APR
models on Code Refinement

We report the comparison results on Code Refinement in Table 6.
All baseline results are directly obtained from their original papers.
We first observe that “Naive Copy” gives a pretty high BLEU-4 score
but with a zero exact match, indicating the buggy code and its fix
has a large overlap and exact match should be employed as the

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon. Submission Id: 131

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 7: Effects of retriever modules in RAP-Gen.

Retriever TFix Refine-Small Refine-Medium

No Retriever 53.46 21.61 13.96

Random 52.98 21.25 13.53
BM25 53.88 23.82 15.37
CodeBERT 52.96 22.28 15.42
CodeT5 53.93 24.37 15.60
Hybrid (BM25+CodeT5) 54.15 24.80 15.84

primary metric. Among the baselines, NSEdit is a very competitive
one with a best result (24.04 EM) on the small subset and CodeT5
gives the best result (13.96 EM) on themedium set. The lower results
on the medium set compared to the small set indicates that longer
buggy functions are more difficult to fix, which is aligned with
observations in Fig. 5 (a). Overall, RAP-Gen achieves new SoTA
results on two subsets with 24.80 EM for small set and 15.84 EM for
medium set. This again confirms that retrieved fix patterns provide
helpful signals to guide the program repair and the hybrid retriever
is more robust by using both lexical and semantic information.
Fig. 3 (b) shows one case where the retrieved fix pattern (error line
removal) helps RAP-Gen to successfully fix the bug.

5.4 RQ4: Analysis of Hybrid Patch Retriever
We investigate how different retrieval modules affect the APR per-
formance in the retrieval-augmented generation setting in Table 7.
We first compare with a Random baseline via randomly retriev-
ing bug-fix pairs from the codebase. The consistent performance
downgrade compared to “no retriever” implies that randomly re-
trieved fix patterns cannot provide useful guiding signals for APR.
Then we compare our hybrid retriever in RAP-Gen with different
retrievers: sparse BM25 retrievers, and dense retrievers based on
CodeBERT or CodeT5. We observe that CodeT5-based retrievers
outperforms either BM25 or CodeBERT-based retrievers, while our
hybrid retriever combining both BM25 and CodeT5 achieves the
best APR performance, validating the effectiveness of our retriever
module design in RAP-Gen.

We further analyze the performance of our retrievers in terms
of lexical and semantic matching between the query and the top
retrieved patches. We employ the BLEU-4 score to measure their
subtoken overlap for lexical matching, while for semantic matching,
we compute the cosine similarity (CosSim) between their dense
vectors encoded by our fine-tuned DPR retriever. Table 8 shows the
performance of our retrievers on both TFix and Code Refinement
benchmarks. The first row indicates the lower-bound performance
via randomly retrieving bug-fix pairs from the codebase, where we
observe this Random baseline achieves much lower scores in both
lexical and semantic matching.

For lexical matching, BM25 outperforms DPR (CodeT5-based)
on TFix but underperforms on two Code Refinement subsets. We
anticipate that it is due to the data difference between TFix and
Code Refinement, where the latter employs obfuscated identifiers
(e.g., VAR1, VAR2, ...) that hinders the performance of the lexical-
based BM25 retriever. The hybrid retriever achieves the best lexical
matching on all datasets, revealing the semantic information can

Table 8: Lexical (BLEU-4) and semantic (CosSim) retrieval
matching results on TFix and Code Refinement benchmarks.

Retriever TFix Refine-Small Refine-Medium

BLEU-4 CosSim BLEU-4 CosSim BLEU-4 CosSim

Random 0.1 35.5 14.6 35.4 14.6 30.6
BM25 23.7 70.9 41.5 68.5 39.0 66.6
DPR 21.7 75.4 54.4 84.9 44.3 81.3
Hybrid 24.4 73.4 57.4 84.2 45.0 80.9

complement to the lexical information. For semantic matching, DPR
achieves the best results on all datasets, which is not surprising as
it is optimized towards the identical objective. Notably, our hybrid
retriever achieves slightly lower results than DPR but much better
results than BM25, implying it can balance both lexical and semantic
information and be more robust than the lexical-based retrievers,
which are sensitive to the choices of identifier naming.

5.5 RQ5: Comparative study with DL-based APR
models on Defects4J

5.5.1 RAP-Gen Results. We compare RAP-Gen with other SoTA
DL-based APR baselines on Defects4J [21] v1.2 and v2.0 in Table 9.
We consider two settings with spectrum-based fault localization
(FL) and with the perfect FL. Note that all the baseline results are
cited from SelfAPR [72] and DEAR [30]. For a fair comparison, we
follow common practice to adopt the same 5-hour timeout, a beam
size of 100, an ensemble strategy as Recoder [76] for RAP-Gen.

As shown in Table 9, our RAP-Gen achieves new SoTA perfor-
mance under perfect FL by repairing the largest set of bugs (72 bugs
in v1.2 and 53 bugs in v2.0) compared to other baselines. Particu-
larly, it repairs 7 and 8 more bugs than the previous SoTA SelfAPR
in v1.2 and v2.0 respectively. For the results with spectrum-based
FL, RAP-Gen achieves the second-best performance, which are very
competitive to the SoTA models on both v1.2 (48 vs. Recoder’s 49)
and v2.0 (26 vs. SelfAPR’s 28). Considering both v1.2 and v2.0 bugs,
it repairs 74 bugs in total, surpassing either Recoder’s 68 or Self-
APR’s 67 bugs. Overall, both results with or without perfect FL
validate the superiority of our RAP-Gen over other DL-based base-
lines. Notably, compared to many of these models, our RAP-Gen
exhibits another advantage of being a language agnostic model
that can generalize to other APR use cases. By contrast, Recoder
requires to learn edits over AST and SelfAPR requires the test ex-
ecution diagnostics, making them inapplicable or limited to deal
with fragmented code snippets that cannot be parsed into ASTs or
other APR scenarios without test cases.

We investigate to what extent RAP-Gen can complement existing
APR models, including Recoder [76], RewardRepair [73], and Self-
APR [72]. Compared with these SoTA DL-based APR approaches,
RAP-Gen repairs 13 and 12 unique bugs for Defects4J v1.2 and v2.0
respectively, which are never correctly addressed by any other DL-
based APR approaches, veifying that our RAP-Gen can complement
to other top-performing APR approaches. We further show a case
in Fig. 3 (c) and find that RAP-Gen successfully fixes the Chart-9
bug but in a different form with the developer’s fix.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program Repair ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 9: Performance of RAP-Gen on Defects4J v1.2 and v2.0.

Model Spectrum-based FL Perfect FL

v1.2 v2.0 v1.2 v2.0

SequenceR [6] - - 14 -
BugLab [2] - - 17 6
DLFix [29] 30 - 40 -
CoCoNuT [38] - - 43 -
RewardRepair [73] 27 24 44 43
DEAR [30] 47 - 53 -
CURE [19] - - 55 -
Recoder [76] 49 19 64 -
SelfAPR [72] 39 28 65 45

CodeT5 27 13 58 28
RAP-Gen 48 26 72 53
In the table cells, it represents the number of correct patches.
‘-’ indicates data unavailability.

5.5.2 Effects of Retrieval from Various Fix Patterns. We analyze how
retrieving a bug-fix sample from various fix patterns will affect the
APR performance. For this analysis, as shown in Fig. 6, we select 39
bugs from Defects4J v1.2 and v2.0 which CodeT5 cannot fix (red)
and RAP-Gen can fix (green) under the setting with perfect FL. For
the categorization of fix patterns, we base on the 16 perturbation
rules devised from SelfAPR [72] and use its training set for each
rule as a separate retrieval codebase. We retrieve the top-1 bug-fix
sample from the codebase for each rule or fix pattern (denoted as P1
to P16) and examine whether it can improve CodeT5’s performance
after using the guiding signals from such retrieval in RAP-Gen.

From Fig. 6, we observe that retrievals from various fix patterns
in RAP-Gen are generally helpful in correcting CodeT5’s predictions
on Defects4J bugs. We find that most of bugs in v1.2 can be fixed
after retrieval from many different patterns, while for v2.0, there
are some bugs where only a few fix patterns are applicable, e.g., the
P16 for Closure-150 and P5 for JacksonDatabind-54. Across various
fix patterns, we find that the P13 of “insert an existing block” and
P14 of “delete statement” are applicable to most bugs, indicating
these are key fix patterns for repairing Defects4J bugs.

6 THREATS TO VALIDITY
Construct Validity. We evaluated RAP-Gen on three APR bench-

marks: TFix in JavaScript, Code Refinement and Defects4J in Java.
On TFix, we spotted a duplication issue and removed 243 intra-split
or inter-split duplicates out of total 104,804 data instances. This
might slightly impact the comparison between our model and the
TFix (T5-large) model. We mitigate this threat by reporting the re-
sults of our model on the original TFix dataset and also the results
of TFix model on the deduplicated test set. On Code Refinement,
unlike the pairs in TFix can be validated by a static analyzer, its
bug-fix pairs are curated from GitHub commits with a bug-fix re-
lated commit message, and only a portion of them are manually
verified [62]. There is a chance that some pairs are invalid (not re-
lated to the bug fix), which brings potential threats to the reliability
of the evaluation on this dataset.

Figure 6: Effects of retrievals from various fix patterns over
39 bugs from Defects4J v1.2 and v2.0, which RAP-Gen can
fix (green) and CodeT5 cannot fix (red). We represent each
bug on the X-axis and use the color to denote the its fixing
outcome under different retrieval schemes on the Y-axis.

Internal Validity. The threats to internal validity mainly lie in the
hyper-parameter search stage for RAP-Gen. As a neural model, its
performance is highly affected by the choice of hyper-parameters.
To alleviate such threats, we conduct a grid search to tune a better
set of hyper-parameters but we still cannot claim they are the best.

External Validity. We only evaluated our RAP-Gen model on
JavaScript and Java programs and do not study its generalization
to other programming languages (PLs). However, our approach is
language-agnostic as we do not employ any code-specific features
like ASTs and can be applied in a drop-in fashion to other PLs.
Besides, our evaluation on three APR datasets in two PLs should be
comprehensive enough to verify the effectiveness of our approach.

7 CONCLUSION
We present a novel retrieval-augmented patch generation (RAP-
Gen) framework for automatic program repair, a fundamental task
in software engineering to reduce developers’ manual efforts in
debugging. RAP-Gen consists of two components: a hybrid patch
retriever to retrieve relevant fix patterns for a query buggy patch
and a patch generator to synthesize the fixed patch based on both
buggy patch and its retrieved guiding fix patterns. In addition, we
propose to leverage a powerful code-aware pretrained language
model CodeT5 as the backbone of RAP-Gen to facilitate both patch
retrieval and generation in a unifiedmanner. Comprehensive results
on three diverse APR benchmarks in JavaScript and Java have
demonstrated the effectiveness and superiority of our RAP-Gen
model over existing deep learning-based APR approaches.

8 DATA AVAILABILITY
Our code and models can be found in this link (https://figshare.
com/s/a4e95baee01bba14bf4b) and will be open-sourced upon ac-
ceptance to facilitate the development of automatic program repair.

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.

Unified Pre-training for Program Understanding and Generation. In NAACL-HLT.

11

https://figshare.com/s/a4e95baee01bba14bf4b
https://figshare.com/s/a4e95baee01bba14bf4b

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon. Submission Id: 131

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Association for Computational Linguistics, 2655–2668.
[2] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. 2021. Self-

Supervised Bug Detection and Repair. In NeurIPS. 27865–27876.
[3] Earl T. Barr, Yuriy Brun, Premkumar T. Devanbu, Mark Harman, and Federica

Sarro. 2014. The plastic surgery hypothesis. In SIGSOFT FSE. ACM, 306–317.
[4] Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin T. Vechev. 2021. TFix:

Learning to Fix Coding Errors with a Text-to-Text Transformer. In ICML (Pro-
ceedings of Machine Learning Research, Vol. 139). PMLR, 780–791.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Bal-
aji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan
Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew
Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew,
Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021.
Evaluating Large Language Models Trained on Code. CoRR abs/2107.03374
(2021).

[6] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2021. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. IEEE Trans. Software Eng. 47, 9 (2021),
1943–1959.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT (1). Association for Computational Linguistics, 4171–4186.

[8] Thomas Durieux, Youssef Hamadi, and Monperrus Martin. 2017. Production-
Driven Patch Generation. 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER)
(2017), 23–26.

[9] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, andMing Zhou. 2020. CodeBERT: A
Pre-TrainedModel for Programming andNatural Languages. In EMNLP (Findings)
(Findings of ACL, Vol. EMNLP 2020). Association for Computational Linguistics,
1536–1547.

[10] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
2017. Convolutional Sequence to Sequence Learning. In ICML (Proceedings of
Machine Learning Research, Vol. 70). PMLR, 1243–1252.

[11] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, andWestley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Trans. Software
Eng. 38, 1 (2012), 54–72.

[12] Jiatao Gu, Yong Wang, Kyunghyun Cho, and Victor O. K. Li. 2018. Search Engine
Guided Neural Machine Translation. In AAAI. AAAI Press, 5133–5140.

[13] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. In ICLR. OpenReview.net.

[14] Tatsunori B. Hashimoto, Kelvin Guu, Yonatan Oren, and Percy Liang. 2018. A
Retrieve-and-Edit Framework for Predicting Structured Outputs. In NeurIPS.
10073–10083.

[15] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Yaojie Hu, Xingjian Shi, Qiang Zhou, and Lee Pike. 2022. Fix Bugs with Trans-
former through a Neural-Symbolic Edit Grammar. CoRR abs/2204.06643 (2022).

[17] Gautier Izacard and Edouard Grave. 2021. Leveraging Passage Retrieval with
Generative Models for Open Domain Question Answering. In EACL. Association
for Computational Linguistics, 874–880.

[18] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018.
Shaping program repair space with existing patches and similar code. In ISSTA.
ACM, 298–309.

[19] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural
Machine Translation for Automatic Program Repair. In ICSE. IEEE, 1161–1173.

[20] Harshit Joshi, José Pablo Cambronero Sánchez, Sumit Gulwani, Vu Le, Ivan
Radicek, and Gust Verbruggen. 2022. Repair Is Nearly Generation: Multilingual
Program Repair with LLMs. CoRR abs/2208.11640 (2022).

[21] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database of
existing faults to enable controlled testing studies for Java programs. In ISSTA.
ACM, 437–440.

[22] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu,
Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval
for Open-Domain Question Answering. In EMNLP (1). Association for Computa-
tional Linguistics, 6769–6781.

[23] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In ICSE. IEEE Computer

Society, 802–811.
[24] Xuan-Bach Dinh Le, David Lo, and Claire Le Goues. 2016. History Driven

Program Repair. In SANER. IEEE Computer Society, 213–224.
[25] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir

Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. In NeurIPS.

[26] Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. 2022. A Survey on
Retrieval-Augmented Text Generation. CoRR abs/2202.01110 (2022).

[27] Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and Zhi Jin. 2021. EditSum: A
Retrieve-and-Edit Framework for Source Code Summarization. In ASE. IEEE,
155–166.

[28] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 2018. Code Completion with
Neural Attention and Pointer Networks. In IJCAI. ijcai.org, 4159–4165.

[29] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: context-based code
transformation learning for automated program repair. In ICSE. ACM, 602–614.

[30] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2022. DEAR: A Novel Deep Learning-
based Approach for Automated Program Repair. In ICSE. ACM, 511–523.

[31] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: a multi-lingual program repair benchmark set based on the quixey
challenge. In SPLASH (Companion Volume). ACM, 55–56.

[32] Xuliang Liu and Hao Zhong. 2018. Mining stackoverflow for program repair. In
SANER. IEEE Computer Society, 118–129.

[33] Fan Long and Martin Rinard. 2015. Staged program repair with condition syn-
thesis. In ESEC/SIGSOFT FSE. ACM, 166–178.

[34] Fan Long and Martin C. Rinard. 2016. Automatic patch generation by learning
correct code. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (2016).

[35] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In ICLR (Poster). OpenReview.net.

[36] Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svy-
atkovskiy. 2022. ReACC: A Retrieval-Augmented Code Completion Framework.
CoRR abs/2203.07722 (2022).

[37] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021).

[38] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: combining context-aware neural translation models
using ensemble for program repair. In ISSTA. ACM, 101–114.

[39] Diego Marcilio, Carlo A. Furia, Rodrigo Bonifácio, and Gustavo Pinto. 2020.
SpongeBugs: Automatically generating fix suggestions in response to static code
analysis warnings. J. Syst. Softw. 168 (2020), 110671.

[40] MonperrusMartin, Simon Urli, Thomas Durieux, Matias Martinez, Benoît Baudry,
and Lionel Seinturier. 2019. Repairnator patches programs automatically. Ubiq-
uity 2019 (2019), 1 – 12.

[41] Matias Martinez, Westley Weimer, and Monperrus Martin. 2014. Do the fix
ingredients already exist? an empirical inquiry into the redundancy assumptions
of program repair approaches. Companion Proceedings of the 36th International
Conference on Software Engineering (2014).

[42] KivançMuslu, Yuriy Brun, ReidHolmes,Michael D. Ernst, andDavidNotkin. 2012.
Speculative analysis of integrated development environment recommendations.
In OOPSLA. ACM, 669–682.

[43] Wonseok Oh and Hakjoo Oh. 2022. PyTER: effective program repair for Python
type errors. In ESEC/SIGSOFT FSE. ACM, 922–934.

[44] Md. Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Retrieval Augmented Code Generation and Summarization.
In EMNLP (Findings). Association for Computational Linguistics, 2719–2734.

[45] Jeff H. Perkins, Sunghun Kim, Samuel Larsen, Saman P. Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, W. Wong, Yoav Zibin, Michael D. Ernst, and Martin C. Rinard.
2009. Automatically patching errors in deployed software. In SOSP ’09.

[46] Long N. Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James T. Anibal, Alec Pel-
tekian, and Yanfang Ye. 2021. CoTexT: Multi-task Learning with Code-Text
Transformer. CoRR abs/2105.08645 (2021).

[47] Strategic Planning. 2002. The economic impacts of inadequate infrastructure for
software testing. National Institute of Standards and Technology (2002), 1.

[48] Julian Aron Prenner, Hlib Babii, and Romain Robbes. 2022. Can OpenAI’s Codex
Fix Bugs?: An evaluation on QuixBugs. In APR@ICSE. IEEE, 69–75.

[49] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014.
The strength of random search on automated program repair. In ICSE. ACM,
254–265.

[50] Zichao Qi, Fan Long, Sara Achour, and Martin C. Rinard. 2015. An analysis of
patch plausibility and correctness for generate-and-validate patch generation
systems. In ISSTA. ACM, 24–36.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program Repair ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

[51] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[52] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 140:1–140:67.

[53] André Riboira and Rui Abreu. 2010. The GZoltar Project: A Graphical Debugger
Interface. In TAIC PART (Lecture Notes in Computer Science, Vol. 6303). Springer,
215–218.

[54] Stephen E. Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance
Framework: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (2009), 333–389.

[55] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In ACL (1). The Association for
Computer Linguistics.

[56] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. Advances in neural information processing systems 27
(2014).

[57] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. In ACL (1). The Association for Computer Linguistics, 1556–1566.

[58] Shin Hwei Tan and Abhik Roychoudhury. 2015. relifix: Automated repair of
software regressions. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. IEEE, 471–482.

[59] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury.
2016. Anti-patterns in search-based program repair. In SIGSOFT FSE. ACM,
727–738.

[60] Kristín Fjóla Tómasdóttir, Mauricio Finavaro Aniche, and Arie van Deursen.
2017. Why and how JavaScript developers use linters. In ASE. IEEE Computer
Society, 578–589.

[61] Nikzad Benny Toomarian and Jacob Barhen. 1992. Learning a trajectory using
adjoint functions and teacher forcing. Neural Networks 5, 3 (1992), 473–484.

[62] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. An Empirical Study on Learning Bug-
Fixing Patches in the Wild via Neural Machine Translation. ACM Trans. Softw.
Eng. Methodol. 28, 4 (2019), 19:1–19:29.

[63] Simon Urli, Zhongxing Yu, Lionel Seinturier, and Monperrus Martin. 2017. How
to Design a Program Repair Bot? Insights from the Repairnator Project. 2018
IEEE/ACM 40th International Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP) (2017), 95–104.

[64] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning
with Contrastive Predictive Coding. CoRR abs/1807.03748 (2018).

[65] Rijnard van Tonder and Claire Le Goues. 2018. Static automated program repair
for heap properties. In ICSE. ACM, 151–162.

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS. 5998–6008.

[67] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In EMNLP (1). Association for Computational Linguis-
tics, 8696–8708.

[68] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
2009. Automatically finding patches using genetic programming. 2009 IEEE 31st
International Conference on Software Engineering (2009), 364–374.

[69] Cathrin Weiß, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. 2007.
How Long Will It Take to Fix This Bug?. In MSR. IEEE Computer Society, 1.

[70] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-aware patch generation for better automated program repair. In ICSE.
ACM, 1–11.

[71] Martin White, Michele Tufano, Matias Martinez, Monperrus Martin, and Denys
Poshyvanyk. 2019. Sorting and Transforming Program Repair Ingredients via
Deep Learning Code Similarities. 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER) (2019), 479–490.

[72] He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. 2022.
SelfAPR: Self-supervised Program Repair with Test Execution Diagnostics. In
ASE. ACM, 92:1–92:13.

[73] He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural Program Repair
with Execution-based Backpropagation. In ICSE. ACM, 1506–1518.

[74] Hiroaki Yoshida, Rohan Bavishi, Keisuke Hotta, Yusuke Nemoto, Mukul R. Prasad,
and Shinji Kikuchi. 2020. Phoenix: a tool for automated data-driven synthesis of
repairs for static analysis violations. In ICSE (Companion Volume). ACM, 53–56.

[75] Yuan Yuan and Wolfgang Banzhaf. 2020. ARJA: Automated Repair of Java
Programs via Multi-Objective Genetic Programming. IEEE Trans. Software Eng.
46, 10 (2020), 1040–1067.

[76] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A syntax-guided edit decoder for neural program repair. In
ESEC/SIGSOFT FSE. ACM, 341–353.

13

	Abstract
	1 INTRODUCTION
	2 RELATED WORKS
	2.1 Automatic Program Repair
	2.2 Pretrained Language Models for Code
	2.3 Retrieval-Augmented Generation

	3 APPROACH
	3.1 Task Formulation
	3.2 Revisiting CodeT5
	3.3 Hybrid Patch Retriever
	3.4 Retrieval-Augmented Patch Generator

	4 Experimental Design
	4.1 Dataset
	4.2 Implementation Details
	4.3 Research Questions

	5 EXPERIMENTAL RESULT
	5.1 RQ1: Comparative study with DL-based APR models on TFix
	5.2 RQ2: Analysis of RAP-Gen Predictions on TFix
	5.3 RQ3: Comparative study with DL-based APR models on Code Refinement
	5.4 RQ4: Analysis of Hybrid Patch Retriever
	5.5 RQ5: Comparative study with DL-based APR models on Defects4J

	6 Threats to validity
	7 CONCLUSION
	8 Data Availability
	References

