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E�icient Text-to-Code Retrieval with Cascaded
Fast and Slow Transformer Models
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ABSTRACT
The goal of semantic code search or text-to-code search is to retrieve
a semantically relevant code snippet from an existing code data-
base using a natural language query. When constructing a practical
semantic code search system, existing approaches fail to provide an
optimal balance between retrieval speed and the relevance of the
retrieved results. We propose an e�cient and e�ective text-to-code
search framework with cascaded fast and slow models, in which
a fast transformer encoder model is learned to optimize a scalable
index for fast retrieval followed by learning a slow classi�cation-
based re-ranking model to improve the accuracy of the top K results
from the fast retrieval. To further reduce the high memory cost of
deploying two separate models in practice, we propose to jointly
train the fast and slow model based on a single transformer en-
coder with shared parameters. Empirically our cascaded method
is not only e�cient and scalable, but also achieves state-of-the-art
results with an average mean reciprocal ranking (MRR) score of
0.7795 (across 6 programming languages) on the CodeSearchNet
benchmark as opposed to the prior state-of-the-art result of 0.744
MRR. Our codebase will be made publicly available.

1 INTRODUCTION
Building automatic tools that can enhance software developer pro-
ductivity has recently garnered a lot of attention in the deep learn-
ing and software engineering research communities. Code retrieval
systems can make developers more productive by enabling them to
search and reuse from the enormous volume of open-source reposi-
tories available online, thus speeding up the software development
lifecycle. Code search systems can be particularly of great value
for organizations with internal proprietary code. Indexing source
code data internally for search can prevent redundancy and boost
programmer productivity. A study by Xu et al. [61] surveys devel-
opers to understand the e�ectiveness of code generation and code
retrieval systems. Their results indicate that the two systems serve
complementary roles and developers prefer retrieval modules over
generation when working with complex functionalities, thus advo-
cating the need for better code search systems. Beyond their direct
utility in improving developer productivity, code search solutions
have also been leveraged to improve the performance of code gen-
eration systems, [36, 42, 47, 65] when used as sub-components, thus
adding to the signi�cance of research on improving text-to-code
retrieval.

Our primary focus in this work is to improve the performance
of text-to-code search solutions, as evaluated by these two aspects:
the speed of retrieval and the relevance of the retrieved results to
the input query. We propose to bring this improvement by cascad-
ing two approaches with complementary strengths - fast retrieval
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systems that sacri�ce relevance but o�er high retrieval speed, and
slow retrieval systems that sacri�ce speed but return results with
higher relevance.

We �nd inspiration for this multi-stage approach from recent
progress in the text-to-image retrieval domain [12, 29, 30, 38]. Re-
searchers have shown impressive results on the traditional doc-
ument retrieval problem (text-to-text search) using transformer
based models [24, 43, 60]. This progress has in turn guided a lot
of research in the text-to-code retrieval domain [13, 18]. Parallel
to the progress in natural language processing (NLP), language
models (LMs) pre-trained on code like CodeBERT [13], CodeGPT
[37], InstructGPT [46], Codex [8], PLBART [1] and CodeT5 [59]
have now been proposed for understanding and generation tasks
involving programming languages. However, there has been very
limited research [58] on studying the similarities between the two
problem settings of text-to-image and text-to-code retrieval despite
their common theme of aligning data from two di�erent modalities.
We believe further improvements in text-to-code search can be
achieved using the two stage paradigm that has been shown to be
e�ective for text-to-image search.

One could question the pertinence of text-to-code search given
the current state of research on code generation using transformer
based large language models (LLMs). Chen et al. [8]’s 12B parame-
ter Codex, Li et al. [31]’s 41B parameter AlphaCode, Nijkamp et al.
[44]’s 16B parameter CodeGen and Austin et al. [2]’s 137B parame-
ter LM use large scale autoregressive language models to demon-
strate impressive capabilities of generating multiple lines of code
from natural language descriptions, well beyond what previous gen-
erationmodels like GPT-C [52] could accomplish.Would developers
need text-to-code search when LLMs trained on code can generate
correct looking programs for a natural language prompt? We argue
that text-to-code retrieval would still be a valuable o�ering for de-
velopers for the following reasons: The impressive performance of
code generation systems is often predicated on being able to draw
many samples from the model [28] and machine-check them for
correctness. This setup will often not be the case in practice [10].
Code generation models also entail security implications (possibil-
ity of producing vulnerable or misaligned code) [8, 26, 48], making
their adoption tricky. Besides, some recent studies [34] have found
limitations with popular benchmarks like HumanEval that have
been relied on to measure the correctness of model generated pro-
grams, suggesting that the synthesized program correctness scores
of code LLMs have been overestimated.

Given this current landscape, code retrieval systems can serve
as attractive alternatives when building tools to assist developers.
With e�cient implementations, code search for a single query can
typically be much faster for most practical index sizes than generat-
ing code with large scale LMs. As opposed to code generation, code
retrieval o�ers interpretability and the possibility of a much greater
control over the quality of the result as the index entries can be
veri�ed beforehand. Another bene�t with code search systems is
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the ability to leverage additional data post training as this simply
requires extending the index by encoding new instances. Moreover,
a code generation system can be augmented with a code retrieval
system to improve the generation ability [47].

For semantic code search, deep learning based approaches [16,
18, 51, 62] involve encoding query and code independently into
dense vector representations in the same semantic space. Retrieval
is then performed using the representational similarity (based on co-
sine or euclidean distances) of these dense vectors. This framework
is often referred with di�erent terms like representation/embed-
ding based retrieval [21], dense retrieval [24], two tower [15], or
fast/dual encoder [12, 40] approach in di�erent contexts. An orthog-
onal approach involves encoding the query and the code jointly
and training semantic code search systems as binary classi�ers that
predict whether a code answers a given query [20, 37] (referred to
as monoBERT style [45] or as slow classi�er). With this approach,
the model processes the query paired with each candidate code se-
quence, meaning the text and code snippets are concatenated at the
input stage of the neural network. Intuitively, this approach helps
to sharpen the cross information between query and code and is a
better alternative for capturing matching relationships between the
two modalities (natural language (NL) and programming language
(PL)) than the simple similarity metric between the fast encoder
based sequence representations. While this latter approach can be
promising for code retrieval, previous works have mostly leveraged
it for tasks like text to code generation or binary classi�cation in the
form of text-code matching [37]. Directly adapting this approach
to code search tasks would be impractical due to the large number
of candidates to be considered for each query. Inference with this
setup would require each candidate to be combined with the query
and passed through the classi�er. We depict the complementary
nature of these approaches in Figure 1 when using a transformer
[55] encoder based model for retrieval and classi�cation.

In order to leverage the potential of such nuanced classi�er mod-
els for the task of retrieval, we propose a cascaded scheme (CasCode)
where we process only a limited number of candidates with the
classi�er model. This limiting can be achieved by employing the
representation based (fast encoder) approach and picking its top
few candidate choices for processing by the second classi�er stage.
Our cascaded approach leads to state of the art performance on the
CodeSearchNet benchmark with an overall mean reciprocal ranking
(MRR) score of 0.7795, signi�cantly improving over previous results
(best reported MRR score of 0.744 from Guo et al. [17]). We propose
a variant of the cascaded scheme with shared parameters, where a
single transformer model can serve in both the modes - encoding
in the representation based retrieval stage and classi�cation in the
second stage. This shared variant can be achieved by multi-task
training [6, 50] using the sum of the two objectives correspond-
ing to these two distinct task settings. CasCode’s shared variant
substantially reduces the memory requirements, while o�ering re-
trieval performance that is comparable to the separate variant with
an MRR score of 0.7700. We also show improvements with our Cas-
Code approach for the AdvTest python dataset popularised by the
CodeXGLUE benchmark [37] to assess the generalization abilities
of code retrieval models when the function and variable names of
a program are normalised and thus unrelated to its semantics.

Figure 2 illustrates the trade o� involved between inference
speed and retrieval performance (MRR) for di�erent algorithmic
choices, where we have the (fast) encoder model on one extreme,
and the (slow) classi�er model on the other. With CasCode, we
o�er performance comparable to the optimal scores attained by the
classi�er model, while requiring substantially lesser inference time,
thus making it computationally feasible.

Our key contributions in this paper are the following.

• We �rst show that the performance of existing dense retrieval
models (CodeBERT and GraphCodeBERT) trained with con-
trastive learning can be signi�cantly improved when trained
with larger batch-size, these serve as stronger baselines for code
retrieval.

• To further push retrieval performance, we propose the cascaded
code search scheme (CasCode) that performs code retrieval in
two stages, and we analyze the trade-o� of the inference speed
and retrieval performance.

• We show that the transformer models in the two stages of Cas-
Code can be shared by training in a multi-task manner, which
signi�cantly reduces the memory requirements.

• With CasCode, we report state of the art text-to-code retrieval
performance on public benchmarks of CodeSearchNet and the
normalised AdvTest (Python) dataset from CodeXGLUE

2 RELATEDWORK
Our work is heavily inspired by recent progress in neural search
and ranking for natural language, where pre-trained transformer
language models have been extensively used. Karpukhin et al. [24]
�netune BERT [11] based encoders to build the passage retrieval
component of their open domain question answering (QA) system,
where the goal is to develop systems capable of answering questions
without any topic restriction. E�cient passage retrieval to select
candidate contexts is a critical step in such pipelines. Xiong et al.
[60] show improvements in transformer based dense retrieval of
text by using globally retrieved hard negatives when �netuning
the encoders, resulting in e�ective performance on web search and
QA. Chang et al. [7] propose novel pre-training objectives to train
transformer models that specialize at embedding-based large-scale
text retrieval.

Lin et al. [33] provide an exhaustive survey on the use of pre-
trained language models for text ranking and study the trade o�s
involved in the di�erent alternatives. In the single stage fashion, a
common approach is representation based ranking, where BERT-
based models (bi-encoders or fast encoders) are trained to indepen-
dently encode the query and documents, and inference involves
dot product based similarity search for retrieval [13, 18]. Another
single stage approach is monoBERT [20, 45] (slow classi�er), where
query-document pairs are passed jointly to a BERT encoder and
the model predicts whether the input document is relevant to the
query or not. The monoBERT approach is computationally more
expensive, but also tends to be more accurate than the bi-encoder
approach. However, with the bi-encoder approach we can index
all the document representations o�ine. Thus at inference time,
we simply need to encode the query, making it a very attractive
retrieval setup. Achieving this inference speedup by caching rep-
resentations is not possible in the monoBERT setting, as it jointly
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Figure 1: Illustration of the the inference stage of fast encoder (left) and slow classi�er (right) based semantic code search
approaches. With the encoder based approach, we independently compute representations of the natural language (NL) query
and candidate code sequences. The code snippet with representation nearest to the query vector is then returned as the search
result. With the classi�er based approach, we jointly process the query with each code sequence to predict the probability of
the code matching the query description. The code sequence corresponding to the highest classi�er con�dence score is then
returned as the search result.

processes the query and document strings. As an alternative to
these two frameworks, Khattab and Zaharia [25] propose ColBERT
which performs late interaction between a query and document
after their independent encoding. This leads to performance that
is comparable to the monoBERT approach, but is less computa-
tionally expensive during inference. However, ColBERT requires
storing per token representations of all the document candidates
as inputs to the late interaction, and this can demand impractically
high storage. The limitations of monoBERT when handling a large
number of candidate documents inspire the need for multi-phase
retrieval, where the �rst phase can retrieve candidate documents
with the cost e�ective bi-encoder approach (dot-product retrieval),
followed by the second stage where only the top candidates from
the �rst stage are processed by a more expensive monoBERT model.
For code retrieval, we experimentally show that these two models
can share a majority of their parameters. Thus, a single encoder
backbone can serve in the two stages - �rst as the bi-encoder for
fast retrieval, and then as the more powerful monoBERT.

Early work on neural approaches to code search [51] leveraged
unsupervised word embeddings [39, 49] to represent code snip-
pets as textual documents. Subsequently, supervised approaches
using LSTM architectures showed improvements [5, 56] by also
leveraging data augmentation strategies to transform code snip-
pets while preserving their semantics [4]. Later with the advent of
the transformer architecture in natural language processing [55],
several works [13, 18, 23, 57, 59] employed transformer models for
code retrieval tasks and reported signi�cant gains in performance

over previous approaches. Across a majority of these recent works,
CodeSearchNet by Husain et al. [22] has emerged as a standard
benchmark for calibrating code search performance. Researchers
have attempted to modify the pre-training of transformer models
for the code domain by embedding the structural information as-
sociated with programs in di�erent forms. This has led to a string
of code pre-trained models like CodeBERT [13] which introduced
novel pre-training tasks for bimodal datasets containing text and
code, GraphCodeBERT [18] which is pre-trained on code using
tasks that embed structural information from the abstract syntax
trees (ASTs) of code inputs and SynCoBERT [57], a syntax aware
encoder architecture. In a related line of work, Lu et al. [37] propose
a benchmark (NL-code-search-WebQuery) where natural language
code search is framed as the problem of analysing a query-code
pair to predict whether the code answers the query or not. More
recently, Guo et al. [17] released UniXCoder. Unike CodeBERT’s
encoder-only pre-training (that uses the masked language modeling
(MLM) and replaced token detection (RTD) objectives only), UniX-
Coder is pre-trained with a set of tasks like MLM, unidirectional
language modeling, span denoising, cross-modal contrastive learn-
ing and cross-modal generation and has shown to be a competitive
alternative for several code understanding and generation tasks.

In contrast to the research theme of �nding optimal pre-training
strategies for code, we focus on the adaptation or �ne-tuning stages
of pre-trained models. Similar to the pre-training stage, this �ne-
tuning stage also o�ers di�erent training choices, which have been
underexplored so far. One could adapt a pre-trained model in the

3

Akhilesh Deepak Gotmare

Akhilesh Deepak Gotmare



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Overview of the speed versus performance (MRR
metric 0-1: higher is better) trade-o� of current code search
approaches. With CasCode, we are able to achieve perfor-
mance comparable to the optimal classi�er based approach
(top right), while requiring substantially lesser inference
time. Areas of the circles here are proportional to model
sizes. For reference Fast Encoders require 125M parameters.

fast encoder style or through the slow classi�er style for retrieval.
CasCode proposes to combine these two approaches to achieve op-
timal retrieval performance (speed and relevance) with any given
pre-trained code understanding model.

3 CASCADING TRANSFORMER MODELS FOR
TEXT-TO-CODE RETRIEVAL (CASCODE)

In this section, we describe our proposed CasCode approach in-
cluding details of training and inference phases of the fast encoder
stage (3.1), the slow classi�er stage (3.2), our cascading scheme (3.3),
and the shared variant of CasCode (3.4).

3.1 Stage I: Fast Encoders
For the �rst stage of fast (bi-) encoders, we use the contrastive
learning framework [9], similar to the �ne-tuning by Guo et al. [18],
who leverage pairs of natural language and source code sequences
to train text-to-code retrieval models. The representations of natural
language (NL) and programming language (PL) sequences that
match in semantics (a positive pair from the bimodal dataset) are
pulled together, while representations of negative pairs (randomly
paired NL and PL sequences) are pushed apart. The infoNCE loss (a
form of contrastive loss function [19]) used for this approach can
be de�ned as follows:

LinfoNCE =
1
#

#’
8=1

� log
exp(5\ (G8 )) 5\ (~8 )/f)Õ

9 2B exp(5\ (G8 )) 5\ (~ 9 )/f)
(1)

where 5\ (G8 ) is the dense representation for the NL input G8 , and
~8 is the corresponding semantically equivalent PL sequence. #
is the number of training examples in the bimodal dataset, f is
a temperature hyper-parameter to control the sharpness of the
model’s output probability distribution, and B denotes the current
training minibatch.

While the above approach applies for any model architecture,
Guo et al. [18] employ GraphCodeBERT and CodeBERT for 5\ in
their experiments. We refer to this approach as fast as it bene-
�ts from caching of candidate encodings before query time. Dur-
ing inference, we are given a set of candidate code snippets C =
{~1,~2, . . .~ |C | }, which are encoded o�ine into an index {5\ (~ 9 )89 2
C}. For a test NL query G8 , we then compute 5\ (G8 ) and return the
code snippet from C corresponding to the nearest neighbor (as per
the cosine similarity distance metric) in the index. During inference,
we are only required to perform the forward pass associated with
5\ (G8 ) and the nearest neighbor lookup in the PL index, as the PL
index itself can be constructed o�ine. This makes the approach
very suitable for practical scenarios where the number of candidate
code snippets |C| could be very large.

Interestingly, a single encoder - either CodeBERT and Graph-
CodeBERT can be used to process the two modalities of text (5\ (G8 ))
and code (5\ (~8 )). This could be attributed to the NL-PL pre-training
of these models. Given this observation with the two code pre-
trained models, in all our experiments we process the NL and PL
inputs in the same manner, agnostic to their modality.

3.2 Stage II: Slow Classi�ers
Although the above retrieval approach is e�cient for practical
scenarios, the independent encodings of the query and the code
make it less e�ective as these do not allow for self-attention style
interactions between NL and PL tokens. Similar to the monoBERT
approach, we could instead encode the query and the code candidate
jointly within a single transformer encoder and perform binary
classi�cation for ranking. In particular, the model could take as
input the concatenation of NL and PL sequences [G8 ;~ 9 ] and predict
whether the two match in semantics.

The training batches for this binary classi�cation setup can again
be constructed using the bimodal dataset (positive pairs denoting
semantic matches), and the negative pairs (mismatch) can be con-
structed arti�cially. Given a set of # paired NL-PL semantically
equivalent sequences {G8 ,~8 }#8=1, the cross-entropy objective func-
tion for this training scheme would be:

LCE = � 1
#

#’
8=1, 9<8

log ?\ (G8 ,~8 ) + log(1 � ?\ (G8 ,~ 9 )) (2)

where ?\ (G8 ,~ 9 ) represents the probability that the NL sequence
G8 semantically matches the PL sequence ~ 9 , as predicted by the
classi�er. With a minibatch B of positive pairs {G8 ,~8 } 88 2 B,
we can randomly pick ~ 9 ( 9 2 B; 9 < 8) from the PL sequences
in the minibatch and pair it with G8 to serve as a negative pair.
When using a transformer encoder based classi�er, the interactions
between the NL and PL tokens in the self-attention layers can
help in improving the precision of this approach over the previous
(independent encoding) one.
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Figure 3: CasCode’s Inference stage: The queryG8 and the code
snippets are �rst encoded independently by the transformer
encoders. The top K candidates (based on nearest neighbor
lookup) are then passed to the classi�er which jointly pro-
cesses the querywith each of the�ltered candidates to predict
the probability of their semantics matching.

During inference, we can pair the NL sequence G8 with each
of the ~ 9 from C and rank the candidates as per the classi�er’s
con�dence scores of the pair being amatch. This involves C forward
passes (each on a joint NL-PL sequence, thus longer inputs than
the previous approach), making this approach computationally

infeasible when dealing with large retrieval sets. We refer to this
approach as the one using slow classi�er for retrieval.

3.3 Cascading of the two stages
With a cascaded scheme (that we call CasCode), we can unify the
strengths of the two approaches - the speed of the fast encoders
with the precision of the slow classi�ers. To build CasCode, we
�rst independently train the two stages discussed above - the fast
encoder stage using the infoNCE objective and the slow classi�er
stage using the cross entropy loss. While these two approaches
are alternatives to each other, we employ them in a sequential
manner to perform retrieval. Figure 3 shows the overall framework
of our approach. This hybrid strategy combines the strengths of
the two approaches in the following manner - Given a query at
test time (inference stage), the �rst stage of fast encoders provides a
similarity score (based on the cosine distance between the query
and candidate encodings) for each candidate from the set C of code
snippets. In practice, the size of the retrieval set (|C|) can often be
very large, and varies from 4360 to 52660 for the CodeSearchNet
datasets we study in our experiments. The top  candidates based
on the similarity scores from the �rst stage are then passed to the
second stage of slow classi�ers where each of them is paired with
the NL input (query) G8 and fed to the model. For a given pair, this
second stage classi�er will return the probability of the NL and
PL components of the input matching in semantics. Using these as
con�dence scores, the rankings of the  candidates are re�ned.

The resulting scheme is preferable for  << |C|, as this would
add a minor computational overhead on top of what is required by
the fast encoder based retrieval. The second stage of re�nement can
then improve retrieval performance provided that the value of  
is set such that the recall of the fast encoder is reasonably high.  
would be a critical hyper-parameter in this scheme, as setting a very
low  would lead to high likelihood of missing the correct snippet
in the set of inputs passed to the second stage slow classi�er, while a
very high  would make the scheme infeasible for retrieval. As we
discuss later in Section 4, CasCode with a  as small as 10 already
o�ers signi�cant gains in retrieval performance over the baselines,
with marginal gains as we increment  to 100 and beyond.

3.4 Making CasCode memory e�cient
In order to minimize the memory overhead incurred by the two
stage model, we propose to share the weights of the transformer
layers of the fast encoders and the slow classi�ers, by training amodel
with the joint (sum) objective Lshared = LinfoNCE + LCE. Thus,
a single transformer model is trained to perform both encoding
based retrieval and classi�cation based retrieval in this multi-task
learning setting. While the number of parameters in this shared
variant would be nearly half of the separate (non-shared) case, the
computational cost at inference would be the same. Note that we
would need some exclusive parameters for the classi�er model,
speci�cally the classi�cation head (a linear layer) on top of the
encoder hidden states output. Thus, in this shared parameter variant
of CasCode, the transformer model consuming the three kinds of
inputs - NL only and PL only (for the fast encoder stage) and NL-PL
(for the slow classi�er stage) is identical except for the classi�cation
head in the second stage.

5

Akhilesh Deepak Gotmare

Akhilesh Deepak Gotmare

Akhilesh Deepak Gotmare

Akhilesh Deepak Gotmare

Akhilesh Deepak Gotmare

Akhilesh Deepak Gotmare

Akhilesh Deepak Gotmare



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

4 EXPERIMENTS
4.1 Setup and Fast retrieval baseline
We use the CodeSearchNet corpus from Husain et al. [22] that in-
cludes six programming languages - Ruby, Javascript, Go, Python,
Java and Php. Our pre-processing and train-val-test splits are identi-
cal to the setting from Guo et al. [18], who �lter low-quality queries
and expand the retrieval set to make the code search task more chal-
lenging and realistic. Figure 2 shows 2 examples of bimodal pairs
from the resulting dataset and the statistics of the dataset after pre-
processing are provided in Table 1. Our primary evaluation metric
is Mean Reciprocal Ranking (MRR), computed as 1

#C4BC

Õ#C4BC
8=1

1
A8
,

where the A8 is the rank assigned to the correct code snippet (for
the 8-th query G8 ) from the set of retrieval candidates C. We report
MRR on the scale of 0-1, some works (eg. [57]) use the 0-100 scale.

Our fast encoder baseline is based on the CodeBERT model
from Feng et al. [13] that is pre-trained on programming languages.
In order to have a strong baseline, we use a newer CodeBERT
checkpoint that we pre-train (using masked language modeling
and replaced token detection tasks) for longer, after we found that
the CodeBERT checkpoint from Feng et al. [13] was not trained
till convergence. When starting from our new checkpoint, we �nd
that the CodeBERT baseline, if �ne-tuned with a larger batch-size
(largest possible that we can �t on 8 A100 GPUs) and for a larger
number of epochs, is able to perform substantially better than the
results reported before. We report the baselines from Guo et al.
[18] in Table 3 along with the results for our replication of two
of these baselines. Previous studies have emphasized this e�ect -
larger batch sizes are known to typically work well when training
with the infoNCE loss in a contrastive learning framework, due to
more negative samples from the batch [9].

We also �netune GraphCodeBERT [18] as a structure aware
model pre-trained on programming languages. GraphCodeBERT
leverages data �ow graphs during pre-training to incorporate struc-
tural information into its representations. However, for the code
search task, we report (Table 3) that GraphCodeBERT does not of-
fer any signi�cant improvements in performance over CodeBERT,
when both variants are trainedwith a large batch size. As CodeBERT
performs competitively and has a relatively simpler architecture
(equivalent to RoBERTa-base[35] model with 12 layers, 768 dimen-
sional hidden states and 12 attention heads), we chose it as the fast
encoder baseline for the remainder of our experiments.

For �netuning on code search, we begin with the baseline im-
plementation of GraphCodeBERT (https://github.com/microsoft/
CodeBERT/tree/master/GraphCodeBERT) and adapt their setup to
also implement the CodeBERT model. For the cascaded schemes,
many of our training design decisions are therefore the same as
GraphCodeBERT. We use 8 A100 GPUs (each with 40 GB RAM) to
train our baselines and CasCode variants. During training, we set
the batch-size to a value that occupies as much available GPU RAM
as possible, which is 576 for the CodeBERT and GraphCodeBERT
baseline �netuning with the infoNCE loss.

MRR scores on the test set for the CodeBERT baseline (fast en-
coder) along with several other baselines including sparse meth-
ods like BM25 (implemented using Pyserini [32]), �ne-tuned CNN,
BiRNN, multi-head attention models are shown in Table 3. Interest-
ingly, BM25 outperforms all other methods on the Python dataset,

this could be attributed to the simplicity of Python and its similarity
with natural language [54]. For the CodeBERT baseline and the
CasCode variants that we have proposed, along with MRR, we also
report Recall@K for  = {1, 2, 5, 8, 10}, that indicates the hit rate
(ratio of instances where we �nd the correct output in the top  
results). We encourage future work on code search to report these
additional metrics, as these are important in evaluating the utility
of a retrieval system and are commonly reported in similar work
in text retrieval and text based image or video retrieval [3, 38]. As
alluded to in Section 3, for designing the cascaded scheme, we need
to pick a  that is large enough to provide reasonably high recall,
and small enough for the second stage to be reasonably fast. To
guide our choice of  , we show in Figure 4 the Recall@K (K varied
over the horizontal axis) for the 6 di�erent programming languages,
with the fast encoder models, over the validation set. For our exper-
iments, we pick  = 10 and 100 where the recall for all 6 datasets
is over 85% and 90%, respectively. Note that CasCode is a general
framework and several di�erent models can be employed in the two
stages. We pick �ne-tuned CodeBERT for the fast encoder phase
of CasCode, as it is a simpler architecture than GraphCodeBERT
or UniXCoder [17] and gives strong performance on its own when
evaluated in the �rst stage only.

4.2 Results with CasCode
To build the model for the second phase of CasCode (separate)
on top of the CodeBERT based (fast) encoders, we train the slow
classi�ers independently but evaluate them by cascading with the
�rst phase. For this second stage model, we �netune the CodeBERT
pre-trained checkpoint (detailed above) with a classi�cation head
on top (a linear layer on top of the hidden-states output) using
the CodeSearchNet dataset. On the validation set, we study the
performance of this �netuned classi�er for retrieval and report the
MRR scores in Figure 5 for di�erent values of  , where  is the
number of top candidates passed from the �rst (fast encoder) stage
to the second. Interestingly, the retrieval performance of this joint
classi�er does not improve signi�cantly beyond certain values of  .
For example, increasing  from 10 to 100 only marginally improves
the MRR for Ruby, Javascript and Java, while for other languages
there is no signi�cant improvement beyond  = 10. In CasCode’s
separate variant, we pair the fast encoder with this second stage
classi�er model and the MRR scores for this approach and the rele-
vant baslines are provided in Table 3. With our cascaded approach,
we observe signi�cant improvements over the fast encoder base-
lines, the overall MRR averaged over the six programming languges
for CasCode (separate) is 0.7795, whereas the fast encoder baseline
(CodeBERT) reaches 0.7422. The improvements with CasCode are
noticeably greater over the baseline for Ruby, Javascript, Python
and Java. We report modest improvements on the Go dataset, where
the fast encoder baseline is already quite strong (0.9145MRR).

We also train fast and slow models with shared parameters,
denoted by CasCode (shared). The training objective for this model
is the sum of the binary cross-entropy loss LCE and the infoNCE
loss LinfoNCE as described in Section 3. The shared variant of Cas-
Code attains an overall MRR score of 0.77, which is comparable
to the separate variant. This slight di�erence can be attributed
to the limited model capacity in the shared case, as the same set
of transformer layers serve in the encoder and classi�er models.
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- Ruby Javascript Go Python Java PHP

Training examples 24,927 58,025 167,288 251,820 164,923 241,241
Dev queries 1,400 3,885 7,325 13,914 5,183 12,982
Testing queries 1,261 3,291 8,122 14,918 10,955 14,014
Candidate codes 4,360 13,981 28,120 43,827 40,347 52,660

Table 1: Data statistics of the �ltered CodeSearchNet corpus for Go, Java, Javascript, PHP, Python and Ruby programming
languages. For each query in the dev and test sets, the answer is retrieved from the set of candidate codes (last row).

Docstring: Prompt the user to continue or not
Code Snippet:
def cont inue_prompt ( message = " " ) :

answer = F a l s e
message = message + " " " \ n " Ye s " o r " No " t o c o n t i n u e : " " "
while answer not in ( " Yes " , "No " ) :

answer = prompt ( message , e v en t l oop = even t l oop ( ) )
i f answer == " Yes " :

break
i f answer == "No " :

break
return answer

Docstring: Sends a message to the framework scheduler.
Code Snippet:
def message ( s e l f , d a t a ) :

l o gg i ng . i n f o ( " " " D r i v e r s e n d s f ramework
mes sage { } " " " . format ( d a t a ) )
return s e l f . d r i v e r . sendFrameworkMessage ( da t a )

Table 2: Examples of bimodal pairs (natural language/doc-
string with corresponding code sequence) from CodeSearch-
Net (Python).

We also evaluate the MRR scores for the CasCode (shared) model
when used in the fast encoder stage only, and the test set MRR
scores were 0.7308, 0.6634, 0.9048, 0.7193, 0.7244, 0.6803 for Ruby,
Javascript, Go, Python, Java and PHP respectively, with the overall
MRR being 0.7372. Thus the cascaded model that was trained in a
multi-task manner with a joint objective, gives competitive retrieval
performance, even when used only in its �rst stage.

The improvements in the MRR scores of both CasCode variants
- shared and separate over the CodeBERT fast encoder baseline
are statistically signi�cant for all 6 programming languages with
? < 0.0001 as per the one-tailed student’s t-test (recommended for
retrieval by Urbano et al. [53]) for both  = 10 and  = 100. We
also report the Recall@K metric for CasCode separate and shared
variants in Figure 6. For all six programming languages, we observe
improvements over the fast encoder baseline with our cascaded
scheme. Similar to our observation from Table 3, the shared variant
of CasCode is slightly worse than the separate one.

CasCode training details: For training the joint NL-PL classi-
�er of CasCode (separate), we are able to use a batch size of 216.
This batch-size is lower than the fast encoder �netuning batch-
size because we are required to process joint NL-PL sequences
(5\ ( [G8 ;~8 ]) which will be much longer in length than a NL only
or PL only sequence. For CasCode’s shared variant, we need to
further reduce the training batch size to 160, as we are required to
store activations from multiple forward passes for a given bimodal

Figure 4: Recall at di�erent values of K over the validation
set of CodeSearchNet [22] when using a �netuned CodeBERT
encoder (fast) for text-code retrieval.

Figure 5: Mean reciprocal ranking (MRR) at di�erent values
of K over the validation set of CodeSearchNet [22] when us-
ing a �netuned CodeBERT (slow) binary classi�er (match or
not) for text-code retrieval. Note that with an increase in the
number of top candidates passed to the second stage, the in-
ference time would also increase, however we do not observe
substantial gains in MRR beyond top-K of 10.

pair - NL only 5\ (G8 ), PL only 5\ (~8 ) and joint NL-PL 5\ ( [G8 ;~8 ]).
All models are trained for 100 epochs. For all our experiments we
use a learning rate of 2e-5, and use the Adam optimizer [27] to
update model parameters. For both the CasCode variants, when
performing evaluation on the development set (for early stopping),
we use  = 100 candidates from the fast encoder stage.
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Model/Method Ruby Javascript Go Python Java Php Overall

BM25 0.3859 0.3259 0.4978 0.9454 0.3272 0.3725 0.4758

As reported by Guo et al. [18]

NBow 0.162 0.157 0.330 0.161 0.171 0.152 0.189
CNN 0.276 0.224 0.680 0.242 0.263 0.260 0.324
BiRNN 0.213 0.193 0.688 0.290 0.304 0.338 0.338
selfAtt 0.275 0.287 0.723 0.398 0.404 0.426 0.419
RoBERTa 0.587 0.517 0.850 0.587 0.599 0.560 0.617
RoBERTa (code) 0.628 0.562 0.859 0.610 0.620 0.579 0.643
CodeBERT 0.679 0.620 0.882 0.672 0.676 0.618 0.693
GraphCodeBERT 0.703 0.644 0.897 0.692 0.691 0.649 0.713
CodeT5-base [59] - - - - - - 0.715
UniXCoder [17] - - - - - - 0.744

As reported by Wang et al. [57]

SynCoBERT 0.722 0.677 0.913 0.724 0.723 0.678 0.740

Replicated with a larger training batch-size

CodeBERT 0.7245 0.6794 0.9145 0.7305 0.7317 0.681 0.7436
GraphCodeBERT 0.7253 0.6722 0.9157 0.7288 0.7275 0.6835 0.7422

Ours ( =10)

CasCode (shared) 0.7621 0.6948 0.9193 0.7529 0.7528 0.7001 0.7637
CasCode (separate) 0.7724 0.7087 0.9258 0.7645 0.7623 0.7028 0.7727

Ours ( =100)

CasCode (shared) 0.7686 0.6989 0.9232 0.7618 0.7602 0.7074 0.7700
CasCode (separate) 0.7825 0.716 0.9272 0.7704 0.7723 0.7083 0.7795

Table 3: Mean Reciprocal Ranking (MRR) scores of di�erent methods on the codesearch task on 6 Programming Languages from
the CodeSearchNet corpus (test set). The �rst row indicates performance with the BM25 scoring using bag-of-words (sparse)
representations. The next set consists of four �netuning-based baseline methods (NBow: Bag of words, CNN: convolutional
neural network, BiRNN: bidirectional recurrent neural network, and multi-head attention), followed by the second set of
models that are pre-trained then �netuned for code search (RoBERTa: pre-trained on text by Liu et al. [35], RoBERTa (code):
RoBERTa pre-trained only on code, CodeBERT: pre-trained on code-text pairs by Feng et al. [14], GraphCodeBERT: pre-trained
using structure-aware tasks by Guo et al. [18]), CodeT5-base: Encoder-decoder transformer model by Wang et al. [59] pre-
trained for code understanding and generation tasks, UniXCoder: uni�ed cross-modal pre-trained model for code by Guo
et al. [17]. SynCoBERT: pre-trained using syntax-aware tasks by Wang et al. [57]. CasCode (separate): Our cascaded retrieval
scheme using two independent transformer encoder models, �rst in the fast/dual encoder stage and later in the slow classi�er
(monoBERT-style) stage. CasCode (ours) shared: a single encoder model is used in both the stages of CasCode using model
parameter sharing. In the last four rows, we report the results with the shared and separate variants of our CasCode scheme.

When running inference on a single A100 GPU on a single query
(batchsize of 1), the CodeBERT style fast encoder occupies 1482
MB of GPU RAM. This is also true for the slow binary classi�ers
(monoBERT style) and the shared CasCode variants. The inference
stage memory requirement gets roughly doubled with CasCode’s
separate variant where there is no sharing of weights between the
fast encoder and slow classi�er stages. This is expected because
the separate variant stores two di�erent encoder models (identical
architecture except the classi�cation head), but di�erent weights)
on the GPU RAM.
4.3 Retrieval speed comparison
Having established the improvements in retrieval performance with
CasCode, we proceed to analyze the trade-o� between inference
speed and performance, for the di�erent methods discussed. For

each variant, we record the time duration (averaged over 100 in-
stances) required to process (obtain a relevant code snippet from
the retrieval set) an NL query from the held-out set. We use the
Ruby dataset of CodeSearchNet for this analysis, which contains
4360 candidate code snippets for each NL query. We conduct this
study on a single Nvidia A100 GPU. Table 4 shows the results.

For the fast encoder approach (using infoNCE-�netuned Code-
BERT), we �rst incur some computational cost to encode all the
candidate code snippets and construct the PL index (6.76 seconds
for Ruby’s retrieval set). This computation is common to all ap-
proaches, except the slow (binary, joint) classi�er one. Since this
computation can be performed o�ine before the model is deployed
to serve user queries, we do not include this cost in our results
in Table 4. With the PL index constructed beforehand, we report
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Figure 6: Recall @ K = {1, 2, 5, 8, 10} with the fast encoder and CasCode (shared and separate) methods on the test set queries of
CodeSearchNet dataset.

the time required to encode a user NL query, and perform nearest
neighbor lookup on the PL index with the encoding, in the �rst
row of Table 4. This computation is again performed by all the
CasCode variants, and thus acts as the lower bound on time taken
by CasCode for retrieval. For the analysis to be as close to real
world scenarios as possible, we do not batch the queries (which can
provide further speed-ups, specially on GPUs) and encode them
one by one. Batching them would require assuming that we have
the NL queries beforehand, while in practice we would be receiving
them on the �y from users when deployed.

With the slow classi�er approach, we would pair a given query
with each of the 4360 candidates, and thus this would lead to the
slowest inference of all the variants. For all variants of CasCode,
the inference duration listed in Table 4 includes the time taken by
the fast encoder based retrieval (�rst stage) along with the second
stage. For CasCode’s second stage, we can pass the  combinations
(query concatenated with each of the top- candidate from the fast
stage) in a batched manner. The shared variant, while requiring
half the parameters, incurs the same computational cost when used
in the cascaded fashion. We note from Table 4 that at a minor drop
in the MRR score, lowering CasCode’s  from 100 to 10 can lead to
almost 3x faster inference.

4.4 AdvTest (normalized) set evaluation
Previous works [13, 18] have employed a normalised variant of the
CodeSearchNet Python dataset called AdvTest to evaluate text-to-
code retrieval models. The function and variable names appearing
in the code snippets in the test and development sets of this python
dataset are normalized (Func for function names, arg-i for the i-
th variable name). An example of this normalization is shown in
Table 7. This dataset was processed and released by [37] to test
the understanding abilities of code search systems as part of the
CodeXGLUE benchmark. We follow their lead in evaluating our

proposed CasCode on the AdvTest benchmark to study its retrieval
e�ectiveness in this challenging setting. When experimenting with
the AdvTest dataset, our focus is to is to compare the code un-
derstanding and retrieval abilities of di�erent approaches in this
more rigorous evaluation setting than the regular CodeSearchNet
dataset, as the normalization scheme should prevent the models
from over-relying on the natural language semantics (English com-
ponents) of the candidate programs. For instance, the snippet �def
bubble_sort(): <python program here>� in the regular set-
ting would be easier to retrieve than the candidate �def Func():
<python program here>� in the normalized setting for the query
�Implement bubble sort�. In the normalized setting, the model
would have to rely on understanding the program semantics in-
stead of variable or function names, which tend to be closer to
natural language or plain English. Note that the AdvTest dataset
is not adversarially constructed [41, 64] and it does not involve
any gradient based methods (adversarial attacks) to perturb inputs
beyond a simple normalisation function. We speculate that our
models would inherit the same vulnerabilities to adversarial input
perturbations as their NLP counterparts. Evaluating the robustness
of code search models to such sophisticated adversarial attacks is
beyond the current scope of our work.

The AdvTest dataset contains 251,820 training examples, 9,604
validation set examples and 19,210 test set examples. Each example
is a bimodal pair of natural language docstrings and corresponding
code snippets. During test time, all the 19,210 code snippets are
treated as candidates for a given test query. The code retrieval
results achieved by di�erent approaches on this dataset are shown
in Table 5. Results in the �rst two rows are reported from [37] where
RoBERTa and CodeBERT are �ne-tuned (batch size of 32) with the
infoNCE loss discussed before in the fast encoder framework. In
our re-implementation of the stronger baseline of CodeBERT, we
increase the training batch-size to 512. This leads to an improved
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Model # params Inference time (secs) MRR # queries/s

Fast encoders (CodeBERT style) 125M 0.0427 0.7245 23.42
Slow binary classi�ers (monoBERT style) 125M + 0.5M 9.1486 0.7816 0.11
CasCode (separate, K=100) 250M + 0.5M 0.2883 0.7825 3.46
CasCode (shared, K=100) 125M + 0.5M 0.2956 0.7686 3.38
CasCode (separate, K=10) 250M + 0.5M 0.1022 0.7724 9.78
CasCode (shared, K=10) 125M + 0.5M 0.1307 0.7621 7.65

Table 4: Inference speed comparison for di�erent variants of the proposed methods. The number of parameters corresponding
to the classi�er head are separated with a ‘ + ’ sign in the second column. Inference duration is averaged for 100 queries from
the Ruby subset of CodeSearchNet, using a single A100 GPU. Constructing the PL index o�line requires 6.76 seconds for the
Ruby dataset and is not included in the durations listed here. MRR scores are reported on the entire test set. Throughput of the
retrieval model (measured in # queries processed per second) is listed in the last column.

test MRR score of 0.3381. For CasCode’s separate variant, we �ne-
tune the slow classi�er stagewith the binary cross entropy loss. This
second stage model is initialized from the CodeBERT pre-trained
checkpoint and trained on the 251,820 pairs. For each positive pair,
we can create a synthetic negative one by pairing a docstring with
a random code snippet. For CasCode’s shared variant, we train the
two stages jointly by tying the weights of the two encoder similar
to previous experiments from Section 4.2. The �netuning loss is
the sum of the infoNCE loss and binary CE loss computed using
the same minibatch.

From Table 5, we see that when using CasCode with  = 10
candidates, we observe a substantial imrpovement, the shared vari-
ant scores MRR of 0.4005, and the separate one 0.3972. Retrieval
performance can be further improved to MRR score of 0.4299 with
the shared variant and 0.4398 with the separate, if we increase the
number of candidates  to 100. In Figure 8, we show an example
from this test set, where, for a given query, the �rst stage of fast
encoder (equivalent to the re-implemented CodeBERT baseline)
assigns a rank A8 of 3 to the matching code snippet, and then the
slow classi�er re�nes the ranking to 1. In cases when CasCode
fails at retrieving the correct code snippet as the top search result,
our qualitative analysis suggests that the resulting code snippet is
often closely related in semantics and functionality. We present one
such case in Figure 9 where the test set query asks for a function
returning an array of certain attributes and the CasCode-retrieved
code snippet performs a similar operation. The gap in performance
for deep learning models between the original unaltered Code-
SearchNet test set and the AdvTest one is nonetheless still an open
problem that suggests our current models over-rely on the func-
tion and variable naming (as done by human programmers) and
less on the inherent structure of the code in representing source
code. Table 8 lists that UniXCoder [17] and CodeT5-base [59], when
used in a single stage (fast encoders), perform competitively on
the AdvTest benchmark. UniXCoder’s performance with an MRR
of 0.413 is signi�cantly better than CodeBERT’s MRR of 0.3381,
but worse than CasCode’s MRR of 0.4398. We expect additional im-
provements to CasCode’s performance on AdvTest by �ne-tuning
a model like UniXCoder in its two stages. Subsequent to our work,
several submissions to the CodexGLUE AdvTest leaderboard seem
to have made this improvement. To the best of our knowledge, the

Code Snippet:
def d a y _ s t a r t _ u t ( s e l f , u t ) :
# s e t t ime z on e t o t h e one o f g t f s

o l d _ t z = s e l f . s e t _ c u r r e n t _ p r o c e s s _ t ime _ z on e ( )
u t = t ime . mktime ( t ime . l o c a l t i m e ( u t ) [ : 3 ]

+ ( 1 2 , 0 0 , 0 , 0 , 0 , −1 ) ) − 43200
s e t _ p r o c e s s _ t ime z on e ( o l d _ t z )
return ut

Normalized code snippet:
def Func ( arg_0 , a rg_1 ) :

a rg_2 = arg_0 . s e t _ c u r r e n t _ p r o c e s s _ t ime _ z on e ( )
a rg_1 = t ime . mktime ( t ime . l o c a l t i m e ( a rg_1 ) [ : 3 ]

+ ( 1 2 , 0 0 , 0 , 0 , 0 , −1 ) ) − 43200
s e t _ p r o c e s s _ t ime z on e ( a rg_2 )
return arg_1

Figure 7: An example of the normalization performed for
constructing the AdvTest dataset. Lu et al. [37] designed the
normalization to curate a challenging test set for text based
code retrieval that can assess the understanding and general-
ization abilities of models.

Model/Method Test MRR

RoBERTa 0.1833
CodeBERT (original implementation) 0.2719
CodeBERT (our re-implemention w/ a larger bsz) 0.3381
CodeT5-base [59] 0.393
UniXCoder [17] 0.413
CasCode (shared, K=10) 0.4005
CasCode (separate, K=10) 0.3972
CasCode (shared, K=100) 0.4299
CasCode (separate, K=100) 0.4398
Table 5: Results on the AdvTest set [37] of CodeSearchNet.

details of these approaches have not yet been released, preventing
any further analysis or comparison.

5 CONCLUSION AND FUTUREWORK
We propose CasCode, a cascaded text-to-code retrieval scheme con-
sisting of transformer encoder and joint binary classi�er stages,
which achieves state of the art performance on the CodeSearchNet
benchmark with signi�cant improvements over previous results.
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Input NL Query: Creates a base Django project

Correct code snippet (retrieved by CasCode’s second stage):
def Func ( a rg_0 ) :

i f os . pa th . e x i s t s ( a rg_0 . _py ) :
a rg_1 = os . pa th . j o i n ( a rg_0 . _app_d i r , a rg_0 . _pro j ec t_name )
i f os . pa th . e x i s t s ( a rg_1 ) :

i f arg_0 . _ f o r c e :
l o gg i ng . warn ( ' Removing e x i s t i n g p r o j e c t ' )
s h u t i l . rmt ree ( a rg_1 )

e l se :
l o gg i ng . warn ( ' Found e x i s t i n g p r o j e c t ;
not c r e a t i n g ( use −− f o r c e to ov e rwr i t e ) ' )
return

l o gg i ng . i n f o ( ' Crea t i ng p r o j e c t ' )
a rg_2 = subp ro c e s s . Popen ( ' cd { 0 } ; { 1 } s t a r t p r o j e c t { 2 }

> / dev / n u l l ' . format (
a rg_0 . _app_d i r ,
a rg_0 . _ v e _d i r + os . sep + \
a rg_0 . _pro j ec t_name + os . sep + \
' b in ' + os . sep + ' django −admin . py ' ,
a rg_0 . _pro j ec t_name ) ,
s h e l l =True )

os . wa i t p i d ( a rg_2 . pid , 0 )
e l se :

l o gg i ng . e r r o r ( ' Unable to f i n d Python i n t e r p r e t e r
in v i r t u a l e n v ' )

return

Top code snippet retrieved by CasCode’s �rst stage:
def Func ( ) :

a rg_0 = Bunch (DEFAULTS )

arg_0 . p r o j e c t _ r o o t = g e t _ p r o j e c t _ r o o t ( )
i f not arg_0 . p r o j e c t _ r o o t :

ra i s e Runt imeError ( "No t a s k s module i s imported ,
cannot de t e rmine p r o j e c t r oo t " )

# t h i s a s sumes an imp o r t a b l e s e t u p . py
i f arg_0 . p r o j e c t _ r o o t not in sy s . pa th :

sy s . pa th . append ( arg_0 . p r o j e c t _ r o o t )
try :

from s e tup import arg_6
except Impo r tE r r o r :

from s e tup import s e t up_ a r g s as arg_6
arg_0 . p r o j e c t = Bunch ( arg_6 )

return arg_0

Figure 8: An example from the test set of the AdvTest (nor-
malized variant) CodeSearchNet (Py) dataset with retrieved
queries fromCasCode’s two stages. For the NL query "Creates
a base Django project", CasCode correctly retrieves the cor-
responding code snippet as the top result. The fast encoder
baseline (�rst stage of CasCode) presents this snippet as the
3rd result, this is then re-ranked to the top by CasCode’s
second stage.
We also propose a shared parameter variant of CasCode, where a
single transformer encoder can operate in the two di�erent stages
when trained in a multi-task fashion. With almost half of the pa-
rameter size and memory cost, CasCode’s shared variant o�ers
comparable performance to the non-shared (separate) variant.

Despite showing promising results, there are still some areas
for improving our method. One limitation of our current cascaded
scheme is that the computation spent in generating representations
in the �rst stage of fast encoders is not fully leveraged in the second
stage. Currently, we process raw token level inputs in the second
stage, but ideally the representations from the �rst stage should

Input NL Query: Get the thing’s actions as an array. ac-
tion_name - Optional action name to get descriptions for. Re-
turns the action descriptions.

Correct code snippet:
def Func ( arg_0 , a rg_1=None ) :

a rg_2 = [ ]

i f arg_1 i s None :
for arg_3 in arg_0 . a c t i o n s :

for arg_4 in arg_0 . a c t i o n s [ a rg_3 ] :
a rg_2 . append ( arg_4 . a s _ a c t i o n _ d e s c r i p t i o n ( ) )

e l i f arg_1 in arg_0 . a c t i o n s :
for arg_4 in arg_0 . a c t i o n s [ a rg_1 ] :

a rg_2 . append ( arg_4 . a s _ a c t i o n _ d e s c r i p t i o n ( ) )

return arg_2

Top code snippet retrieved by CasCode:
def Func ( a rg_0 ) :

a rg_1 = arg_0 . g e t _ d a t a ( " d r o p l e t s /% s / a c t i o n s / " % arg_0 . id ,
type=GET )

arg_2 = [ ]
for arg_3 in arg_1 [ ' a c t i o n s ' ] :

a rg_4 = Act ion ( ∗ ∗ arg_3 )
a rg_4 . token = arg_0 . token
arg_4 . d r o p l e t _ i d = arg_0 . id
arg_4 . l o ad ( )
a rg_2 . append ( arg_4 )

return arg_2

Figure 9: An example from the test set of the AdvTest (nor-
malized variant) CodeSearchNet (Py) dataset where CasCode
doesn’t retrieve the matching code snippet. The correct code
snippet appears 12th in fast encoder’s search results and is
jumped to the 3rd position in the second stage reranking.
be useful for the classi�cation stage too [30]. Our initial attempts
along this direction did not turn fruitful, and future work could
address this aspect. To improve the inference speed of the two-stage
retrieval, future work could explore methods like quantization and
model distillation of the transformer models (e.g., employing the
ONNX runtime [63]). Another limitation warranting further in-
vestigation is associated with the training of the shared variant of
CasCode. Here, training with the multitask learning framework
(joint objective of infoNCE and binary cross entropy) leads to a
model that performs slightly worse than the separate variant (indi-
vidually �netuned models). We tried augmenting the capabilities of
this model with solutions like using independent CLS tokens for the
three modes (the model has to operate in NL only, PL only, NL-PL
concatenation), and adjusting the relative weight of the two losses
involved but failed to obtain any improvement over the separate
variant. Lastly, similar to related work in NLP [7], designing in-
novative pre-training schemes to speci�cally improve code search
performance is also a promising direction for future work.

6 DATA AVAILABILITY
Weprovide our implementation (source code and pointers to datasets)
as supplementary material to replicate the experiments (also avail-
able at this �gshare URL: https://�gshare.com/s/c94bf9c7a5aef4222449),
which will be open sourced upon acceptance to support further
research.
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